1,684 research outputs found
The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis
Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, âhyper-pluripotentâ state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency
Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection
conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta
(ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic
shear (strong guide field). Changing the simulation domain size, we find that
the ion response varies greatly. For reconnecting regions with scales
comparable to the ion Larmor radius, the ions do not respond to the
reconnection dynamics leading to ''electron-only'' reconnection with very large
quasi-steady reconnection rates. The transition to more traditional
''ion-coupled'' reconnection is gradual as the reconnection domain size
increases, with the ions becoming frozen-in in the exhaust when the magnetic
island width in the normal direction reaches many ion inertial lengths. During
this transition, the quasi-steady reconnection rate decreases until the ions
are fully coupled, ultimately reaching an asymptotic value. The scaling of the
ion outflow velocity with exhaust width during this electron-only to
ion-coupled transition is found to be consistent with a theoretical model of a
newly reconnected field line. In order to have a fully frozen-in ion exhaust
with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width
of at least several ion inertial lengths is needed. In turbulent systems with
reconnection occurring between magnetic bubbles associated with fluctuations,
using geometric arguments we estimate that fully ion-coupled reconnection
requires magnetic bubble length scales of at least several tens of ion inertial
lengths
Symmetry breaking in crossed magnetic and electric fields
We present the first observations of cylindrical symmetry breaking in highly
excited diamagnetic hydrogen with a small crossed electric field, and we give a
semiclassical interpretation of this effect. As the small perpendicular
electric field is added, the recurrence strengths of closed orbits decrease
smoothly to a minimum, and revive again. This phenomenon, caused by
interference among the electron waves that return to the nucleus, can be
computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig)
Accepted for publication in Physical Review Letters. Difference from earlier
preprint: we have discovered the cause of the earlier apparent discrepancy
between experiment and theory and now achieve excellent agreemen
Going Beyond Mathematics Anxiety in Primary and Middle School Students: The Role of EgoâResiliency in Mathematics
Previous research examined the influence of math anxiety (MA) on performance in mathematics, but few studies compared the contribution of MA to other forms of anxiety, such as test and general anxiety (GA). Unlike MA, egoâresiliency promotes the management of challenges, and has been positively associated with mathematics performance. In this study, we investigated the specific influence of MA, testâ and GA, and egoâresiliency on mathematics performance after controlling for intelligence. Children from grades 5 to 8 (Nâ= â274) were assessed with selfâreport tools measuring MA, test and GA, and egoâresiliency, and completed intelligence and mathematical tasks. The results of structural equation models showed that MA had a main negative effect on mathematics performance, over and above the effect of testâ and GA. Egoâresiliency had a positive effect on mathematics performance, and was negatively associated with GA. Our findings are discussed in terms of the implications for intervention programs to reduce anxiety and sustain egoâresiliency
Non-commutative Geometry and Kinetic Theory of Open Systems
The basic mathematical assumptions for autonomous linear kinetic equations
for a classical system are formulated, leading to the conclusion that if they
are differential equations on its phase space , they are at most of the 2nd
order. For open systems interacting with a bath at canonical equilibrium they
have a particular form of an equation of a generalized Fokker-Planck type. We
show that it is possible to obtain them as Liouville equations of Hamiltonian
dynamics on with a particular non-commutative differential structure,
provided certain geometric in character, conditions are fulfilled. To this end,
symplectic geometry on is developped in this context, and an outline of the
required tensor analysis and differential geometry is given. Certain questions
for the possible mathematical interpretation of this structure are also
discussed.Comment: 22 pages, LaTe
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Recommended from our members
Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au + Au collisions at sNN =200 GeV
We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity 1<|η|<3 in Au + Au collisions at sNN=200 GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2},v2{4},v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final-state momentum distributions are discussed
- âŠ