22 research outputs found

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Impact of biomass in Egypt on climate change

    No full text
    cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Egypt is one of the most vulnerable countries to climate change due to the expected detrimental impacts on coastal zones, agriculture, water security as well as indirect social and health impacts. Egypt is responsible for 0.57 % of the global greenhouse gas (GHG) emissions. Although Egypt is a non-annex I country not requiring any specific emission reduction or limitation targets under the Kyoto protocol, its National plans have included mitigation measures to reduce its green-house gases. The main sectors contributing to climate change in Egypt are energy, industry, agriculture and waste

    Feasibility of biogas utilization in developing countries: Egypt a case study

    No full text
    One of the main concerns of implementing Anaerobic Digesters (AD) that result in releasing biogas is the disposal of large quantities of organic wastes in an economically and sustainable manners. This paper evaluates the economic sustainability of implementing anaerobic digesters and capturing the released biogas for energy utilization in contained communities in rural areas in Egypt. The experimental data conducted from anaerobic digester on a pilot scale were scaled up and used to perform the economic viability of the proposed project. The reactor was fed by liquid cow manure with Chemical Oxygen Demand (COD) varies between 7500-8000 mg/l at 35°C for 6 days retention time. It was found that, the reactor is capable of producing 0.53 Nm³ of biogas per m³ reactor per day. The economic viability of a project extends beyond the initial financial analysis. It entails analyzing the data using shadow prices as to elimination price distortions, analyzing the indirect costs and benefits of the project, and looking at the overall effect of the project on the economy. The economic indicators are based on the Net Economic Present Value (NEPV) and Economic Rate of Return (ERR) that is resulted from optimal energy production and dig estate application. Through economic evaluation, the Egyptian government can determine which projects will be of benefit to the economy and which will be costly, decisions on which governments formulate their policies. The study concludes that the project will help contribute to the sustainable development of Egypt through its contribution to the environmental, economic, and social pillars. The highest NEPV and ERR were observed by earning carbon credits from reducing greenhouse gas emissions under Kyoto Protocol as a Clean Development Mechanism (CDM) project or Clean Development Mechanism of Program of Activities (CPA). The revenue from the CDM/CPA can overcome any financial barriers, encourage decision makers, and provide foreign exchange for the country. Moreover, the project has a positive value added and creates new jobs. Thus, it would be in the best interests of the economy as a whole for projects like this are implemented on a greater scale

    Sporadic Fibrodysplasia Ossificans Progressiva in an Egyptian Infant with c.617G > A Mutation in ACVR1 Gene: A Case Report and Review of Literature

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is an autosomal dominant severe musculoskeletal disease characterized by extensive new bone formation within soft connective tissues and unique skeletal malformations of the big toes which represent a birth hallmark for the disease. Most of the isolated classic cases of FOP showed heterozygous mutation in the ACVR1 gene on chromosome 2q23 that encodes a bone morphogenetic protein BMP (ALK2). The most common mutation is (c.617G > A) leading to the amino acid substitution of arginine by histidine (p.Arg206His). We currently report on an Egyptian infant with a sporadic classic FOP in whom c.617G > A mutation had been documented. The patient presented with the unique congenital malformation of big toe and radiological evidence of heterotopic ossification in the back muscles. The triggering trauma was related to the infant's head, however; neither neck region nor sites of routine intramuscular vaccination given during the first year showed any ossifications. Characterization of the big toe malformation is detailed to serve as an early diagnostic marker for this rare disabling disease

    Levetiracetam and lamotrigine effects as mono- and polytherapy on bone mineral density in epileptic patients

    No full text
    ABSTRACT The purpose of this study was to determine the effect of lamotrigine (LTG) and levetiracetam (LEV) as mono- and polytherapy on biochemical markers of bone turnover and bone mineral density in Egyptian adult patients with epilepsy. Methods Forty-eight patients were divided into four groups: two received monotherapy of either LTG or LEV, and the other two groups received polytherapy comprising (valproate [VPA] + LTG or VPA + LEV). Thirty matched healthy participants were included in the study. Participants completed a nutritional and physical activity questionnaire. Biochemical markers of bone and mineral metabolism and bone mineral density of the lumbar spine were measured at baseline and at six months. Results In the LEV monotherapy group, the bone formation markers showed a significant decrease in serum alkaline phosphatase and serum osteocalcin levels while the bone resorption marker showed a significant increase in urinary deoxypyridinoline levels. After six months of treatment, bone mineral density showed a significant decrease in all treated groups, while among monotherapy groups, this significant decrease was more prevalent in the LEV monotherapy group compared with the LTG monotherapy group. Furthermore, there was significant negative correlation between urinary deoxypyridinoline levels and bone mineral density in the LEV monotherapy group. Conclusion Using new generation antiepileptics, LEV monotherapies and polytherapy showed harmful effects on bone but LTG did not

    Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies

    No full text
    Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a–d, 11a–d, 13a, b, and 15a–c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50 = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75–13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities

    Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, <i>in vitro</i> biological evaluation, and QSAR studies

    No full text
    <p>Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (<b>4a, b</b>, <b>8a–d</b>, <b>11a–d, 13a, b,</b> and <b>15a–c</b>), and <i>in vitro</i> evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds <b>13a</b> and <b>15a</b> emerged as the most active members against HepG2 cells (IC<sub>50</sub> = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds <b>13a</b> and <b>15a</b> were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound <b>13a</b> induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, <b>13a</b> displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75–13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.</p
    corecore