8 research outputs found

    A gene-centric approach to biomarker discovery identifies transglutaminase 1 as an epidermal autoantigen

    Get PDF
    Publisher Copyright: © 2021 National Academy of Sciences. All rights reserved.Autoantigen discovery is a critical challenge for the understanding and diagnosis of autoimmune diseases. While autoantibody markers in current clinical use have been identified through studies focused on individual disorders, we postulated that a reverse approach starting with a putative autoantigen to explore multiple disorders might hold promise. We here targeted the epidermal protein transglutaminase 1 (TGM1) as a member of a protein family prone to autoimmune attack. By screening sera from patients with various acquired skin disorders, we identified seropositive subjects with the blistering mucocutaneous disease paraneoplastic pemphigus. Validation in further subjects confirmed TGM1 autoantibodies as a 55% sensitive and 100% specific marker for paraneoplastic pemphigus. This gene-centric approach leverages the wealth of data available for human genes and may prove generally applicable for biomarker discovery in autoimmune diseases.Peer reviewe

    Pamoplantar Pustulosis. Pathogenetic Studies with Special Reference to the Role of Nicotine

    No full text
    Palmoplantar pustulosis (PPP) is a chronic disease of unknown pathogenesis. Most of the patients were smokers. High prevalence of a number of autoimmune diseases was observed among the patients (thyroid disease 14%, gluten intolerance 8%, diabetes type 1 3%). Eosinophils and neutrophils were found in large numbers in the pustules. Massive infiltrates of lymphocytes and mast cells in the dermis below the pustule and an abnormal acrosyringial pattern indicate that the acrosyringium is the target for the inflammation. Immunofluorescence (IF) revealed decreased innervation of the sweat gland, outward migration of substance P-positive granulocytes in the acrosyringium and an increased number of contacts between mast cells and nerve fibres in the dermis. Distributions of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were studied, since they regulate the level of acetylcholine, the main inducer of sweating. The most intense AChE-like immunoreactivity (LI) was observed in the acrosyringium in the lowest part of the stratum corneum, corresponding to the site of the pustule in PPP. ChAT-LI in granulocytes and AChE-LI in mast cells were demonstrated, which may have implications for inflammatory processes in general. Nicotinic acetylcholine receptors (nAChR) are activated by acetylcholine but also by nicotine. Immunohistochemstry of α-3 and α-7 subtypes of the nAChRs showed that the nAChR expression in healthy skin was influenced by smoking. A highly abnormal α-7 nAChR distribution in PPP skin was observed. The levels of nAChR antibodies were elevated in 42% of the PPP sera, and 68% of these sera gave specific endothelial IF in the papillary dermis in skin from non-smokers. Positive IF in the acrosyringium was also noted in skin from smokers. Conclusions: Smoking seems to induce up-regulation of an antigen in palmar skin. The results indicate that PPP is an autoimmune disease and that nicotine might have a role in the onset of the inflammation

    Siramesine causes preferential apoptosis of mast cells in skin biopsies from psoriatic lesions

    No full text
    BACKGROUND: Skin mast cells are implicated as detrimental effector cells in various inflammatory skin diseases such as contact eczema, atopic dermatitis and psoriasis. Selective reduction of cutaneous mast cells, e.g. by inducing targeted apoptosis, might prove a rational and efficient therapeutic strategy in dermatoses negatively influenced by mast cells. OBJECTIVES: The objective of the present study was to evaluate whether a lysosomotropic agent such as siramesine can cause apoptosis of mast cells present in psoriatic lesions. MATERIALS AND METHODS: Punch biopsies were obtained from lesional and uninvolved skin in 25 patients with chronic plaque psoriasis. After incubation with siramesine, the number of tryptase-positive mast cells and their expression of interleukin (IL)-6 and IL-17 was analysed. Skin biopsies were digested to allow flow cytometric analysis of the drug's effect on cutaneous fibroblasts and keratinocytes. RESULTS: Siramesine caused a profound reduction in the total number of mast cells in both lesional and uninvolved psoriatic skin biopsies without affecting the gross morphology of the tissue. The drug reduced the density of IL-6- and IL-17-positive mast cells, and showed antiproliferative effects on epidermal keratinocytes but had no apparent cytotoxic effect on keratinocytes or dermal fibroblasts. CONCLUSIONS: Considering the pathophysiology of psoriasis, the effects of siramesine on cutaneous mast cells may prove favourable from the therapeutic aspect. The results encourage further studies to assess the usefulness of siramesine and other lysosomotropic agents in the treatment of cutaneous mastocytoses and inflammatory skin diseases aggravated by dermal mast cells

    Mefloquine causes selective mast cell apoptosis in cutaneous mastocytosis lesions by a secretory granule-mediated pathway

    No full text
    Mastocytosis is a KIT-related myeloproliferative disease characterised by abnormal expansion of neoplastic mast cells (MC) in the skin or virtually any other organ system. The cutaneous form of adult-onset mastocytosis is almost invariably combined with indolent systemic involvement for which curative therapy is yet not available. Here we evaluated a concept of depleting cutaneous MCs in mastocytosis lesions ex vivo by targeting their secretory granules. Skin biopsies from mastocytosis patients were incubated with or without mefloquine, an antimalarial drug known to penetrate into acidic organelles such as MC secretory granules. Mefloquine reduced the number of dermal MCs without affecting keratinocyte proliferation or epidermal gross morphology at drug concentrations up to 40 mu M. Flow cytometric analysis of purified dermal MCs showed that mefloquine-induced cell death was mainly due to apoptosis and accompanied by caspase-3 activation. However, caspase inhibition provided only partial protection against mefloquine-induced cell death, indicating predominantly caspase-independent apoptosis. Further assessments revealed that mefloquine caused an elevation of granule pH and a corresponding decrease in cytosolic pH, suggesting drug-induced granule permeabilisation. Extensive damage to the MC secretory granules was confirmed by transmission electron microscopy analysis. Further, blockade of granule acidification or serine protease activity prior to mefloquine treatment protected MCs from apoptosis, indicating that granule acidity and granule-localised serine proteases play major roles in the execution of mefloquine-induced cell death. Altogether, these findings reveal that mefloquine induces selective apoptosis of MCs by targeting their secretory granules and suggest that the drug may potentially extend its range of medical applications

    Autoantibodies Targeting a Collecting Duct-Specific Water Channel in Tubulointerstitial Nephritis

    No full text
    Tubulointerstitial nephritis is a common cause of kidney failure and may have diverse etiologies. This form of nephritis is sometimes associated with autoimmune disease, but the role of autoimmune mechanisms in disease development is not well understood. Here, we present the cases of three patients with autoimmune polyendocrine syndrome type 1 who developed tubulointerstitial nephritis and ESRD in association with autoantibodies against kidney collecting duct cells. One of the patients developed autoantibodies targeting the collecting duct-specific water channel aquaporin 2, whereas autoantibodies of the two other patients reacted against the HOXB7 or NFAT5 transcription factors, which regulate the aquaporin 2 promoter. Our findings suggest that tubulointerstitial nephritis developed in these patients as a result of an autoimmune insult on the kidney collecting duct cells
    corecore