420 research outputs found

    Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia

    Get PDF
    Flow cytometry was used to measure the fluorescence intensity of nuclei that were subjected to fluorescent in situ hybridization in suspension with chromosome specific DNA probes. Paraformaldehyde-fixed nuclei were protein digested with trypsin and hybridized simultaneously with a biotin-and DIG labeled chromosome specific centromere probe. A number of probes were tested in the suspension hybridizations. The method yielded fluorescent hybridization signals that allow discrimination between Y chromosome positive and negative nuclei when analyzed by flow cytometry. The method is especially suited for analysis of bone marrow cells derived from patients who have received a sex-mismatched allogeneic bone marrow transplantation. Male leukemia cells with a trisomy for chromosome 8 were mixed with normal female cells and simultaneously hybridized in suspension with a DIG labeled probe specific for chromosome 8 and the biotin labeled Y chromosome probe. Y chromosome positive or negative nuclei were s

    The use of FISH with chromosome-specific repetitive DNA probes for the follow-up of leukemia patients

    Get PDF
    The use of fluorescence in situ hybridization (FISH) for the purpose of repeated follow-up examination of bone marrow samples from 38 leukemia patients was investigated. On the basis of conventional cytogenetic analysis, patients with acute leukemia whose leukemic cells carried numerical chromosomal aberrations were selected and followed with repetitive DNA probes that specifically hybridize to one chromosome type. Repeated cytogenetic metaphase analyses would have been laborious and not sensitive or quantitative enough to follow declining numbers of aberrant cells. FISH, as an interphase cytogenetic technique, provides a rapid and simple alternative with high sensitivity. Although FISH data before and after chemotherapy were in agreement with bone marrow cytology in 30 of 38 patients, discrepancies were noticed in specific cases. These could be explained by the presence of cytogenetically distinct subclones that behave differently during treatment, the presence of differentiated leukemic cells, changes in the chromosomal constitution caused by clonal relapse, or the fact that a numerical aberration is found by conventional chromosome banding analysis while the target region to which the probe is directed is still present in the nucleus as a diploid set

    Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes

    Get PDF
    In normal T cell progenitors, phosphoinositide-dependent kinase l (PDK1)–mediated phosphorylation and activation of protein kinase B (PKB) is essential for the phosphorylation and inactivation of Foxo family transcription factors, and also controls T cell growth and proliferation. The current study has characterized the role of PDK1 in the pathology caused by deletion of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN). PDK1 is shown to be essential for lymphomagenesis caused by deletion of PTEN in T cell progenitors. However, PTEN deletion bypasses the normal PDK1-controlled signaling pathways that determine thymocyte growth and proliferation. PDK1 does have important functions in PTEN-null thymocytes, notably to control the PKB–Foxo signaling axis and to direct the repertoire of adhesion and chemokine receptors expressed by PTEN-null T cells. The results thus provide two novel insights concerning pathological signaling caused by PTEN loss in lymphocytes. First, PTEN deletion bypasses the normal PDK1-controlled metabolic checkpoints that determine cell growth and proliferation. Second, PDK1 determines the cohort of chemokine and adhesion receptors expressed by PTEN-null cells, thereby controlling their migratory capacity

    B-cell involvement in chronic graft-versus-host disease

    Full text link

    Genetics and Not Shared Environment Explains Familial Resemblance in Adult Metabolomics Data

    Get PDF
    Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term ‘metabolomics’ refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and 1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability distribution was populated by 5 of the 11 investigated chemical classes

    The Loss of PTEN Allows TCR αβ Lineage Thymocytes to Bypass IL-7 and Pre-TCR–mediated Signaling

    Get PDF
    The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates cell survival and proliferation mediated by phosphoinositol 3 kinases. We have explored the role of the phosphoinositol(3,4,5)P3-phosphatase PTEN in T cell development by analyzing mice with a T cell–specific deletion of PTEN. Ptenflox/floxLck-Cre mice developed thymic lymphomas, but before the onset of tumors, they showed normal thymic cellularity. To reveal a regulatory role of PTEN in proliferation of developing T cells we have crossed PTEN-deficient mice with mice deficient for interleukin (IL)-7 receptor and pre–T cell receptor (TCR) signaling. Analysis of mice deficient for Pten and CD3γ; Pten and γc; or Pten, γc, and Rag2 revealed that deletion of PTEN can substitute for both IL-7 and pre-TCR signals. These double- and triple-deficient mice all develop normal levels of CD4CD8 double negative and double positive thymocytes. These data indicate that PTEN is an important regulator of proliferation of developing T cells in the thymus

    PCN1 COST ANALYSIS OF HLA-IDENTICAL SIBLING AND VOLUNTARY UNRELATED ALLOGENEIC BONE MARROW AND PERIPHERAL BLOOD STEM CELL TRANSPLANTATION IN ADULTS WITH ACUTE MYELOCYTIC LEUKAEMIA OR ACUTE LYMPHOBLASTIC LEUKAEMIA

    Get PDF
    Item does not contain fulltextAllogeneic stem cell transplantation (SCT) is one of the most expensive medical procedures. However, only a few studies to date have addressed the costs of HLA-identical sibling transplantation and only one study has reported costs of unrelated transplantation. No recent cost analysis with a proper follow-up period and donor identification expenses is available on related or voluntary matched unrelated donor (MUD) SCT for adult AML or ALL. Therefore, we calculated direct medical (hospital) costs based on 97 adults who underwent HLA-identical sibling bone marrow transplantation (BMT) or peripheral blood stem cell transplantation (PBSCT), and patients who received a graft from a MUD between 1994 and 1999. The average costs per transplanted patient were Euro 98,334 (BMT), Euro 151,754 (MUD), and Euro 98,977 (PBSCT), including donor identification expenses, 2 years follow-up and costs of patients who were not transplanted after they had been planned to receive an allograft. The majority of these costs was generated during the hospitalisation for graft infusion. For MUD transplants, nearly one-third of these costs was spent on the search for a suitable donor. For patients who were alive after 2 years, cumulative expenses were calculated to be Euro 103,509 (BMT), Euro 173,587 (MUD), and Euro 105,906 (PBSCT)

    Ketone body 3-hydroxybutyrate as a biomarker of aggression

    Get PDF
    Human aggression is a complex behaviour, the biological underpinnings of which remain poorly known. To gain insights into aggression biology, we studied relationships with aggression of 11 low-molecular-weight metabolites (amino acids, ketone bodies), processed using H-1 nuclear magnetic resonance spectroscopy. We used a discovery sample of young adults and an independent adult replication sample. We studied 725 young adults from a population-based Finnish twin cohort born 1983-1987, with aggression levels rated in adolescence (ages 12, 14, 17) by multiple raters and blood plasma samples at age 22. Linear regression models specified metabolites as the response variable and aggression ratings as predictor variables, and included several potential confounders. All metabolites showed low correlations with aggression, with only one-3-hydroxybutyrate, a ketone body produced during fasting-showing significant (negative) associations with aggression. Effect sizes for different raters were generally similar in magnitude, while teacher-rated (age 12) and self-rated (age 14) aggression were both significant predictors of 3-hydroxybutyrate in multi-rater models. In an independent replication sample of 960 adults from the Netherlands Twin Register, higher aggression (self-rated) was also related to lower levels of 3-hydroxybutyrate. These exploratory epidemiologic results warrant further studies on the role of ketone metabolism in aggression.Peer reviewe
    corecore