72 research outputs found

    Devonian Fungi: Interactions with the Green Alga Palaeonitella

    Get PDF
    This paper describes three new taxa of fossil aquatic fungi preserved in 400-million-year-old Lower Devonian Rhynie Chert. All of the fungal morphotypes are attached to cells of the green alga Palaeonitella cranii. Milleromyces rhyniensis is characterized by a holocarpic, epibiotic ^oosporangium with an elongate discharge tube that penetrates the host cell wall; arising from the base of the sporangium is an extensive rhizoidal system. Stages in infection by presumed zoospores are documented. In Lyonomyces pyriformis the globose-pyriform thallus is embedded in the surface coating of the cell wall. At the base of each thallus is a single rhizoid. Krispiromyces is extramatrical, holocarpic, and characterized by a short beak-like discharge papilla. The rhizoidal system appears to be apophysate. Some of these fungi were probably saprobes, while others were deemed parasitic because of the extensive hypertrophy of some of the algal cells. Although not all life history stages are represented, the discovery of these Lower Devonian forms greatly expands our knowledge of the biology and diversity of aquatic fungi in an ancient freshwater ecosystem

    A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland

    Get PDF
    A harvestman (Arachnida: Opiliones) is described from the Early Devonian (Pragian) Rhynie cherts, Aberdeenshire, Scotland. Eophalangium sheari gen. et sp. nov. is the oldest known harvestman. The material includes both males and a female preserving, respectively, a cuticle-lined penis and ovipositor within the opisthosoma. Both these structures are of essentially modern appearance. The Rhynie fossils also show tracheae which are, again, very similar to those of living harvestmen. This is the oldest unequivocal record of arachnid tracheal respiration and indicates that E. sheari was terrestrial. An annulate, setose ovipositor in the female suggests that it can be excluded from the clades Dyspnoi and Laniatores, in which the ovipositor lacks such annulations. However, the penis shows evidence of two muscles, a feature of uncertain polarity seen in modern Troguloidea (Dyspnoi). The presence of median eyes and long legs excludes Cyphophthalmi, and thus, E. sheari is tentatively referred to the suborder Eupnoi. Therefore, this remarkable material is implicitly a crown-group harvestman and is one of the oldest known crown-group chelicerates. It also suggests an extraordinary degree of morphological stasis within the eupnoid line, with the Devonian forms differing little in gross morphology – and perhaps in reproductive behaviour – from their modern counterparts.Peer Reviewe

    Fossil arbuscular mycorrhizae from the Early Devonian

    Get PDF
    The 400 million-year-old Rhynie chert has provided a wealth of information not only of early land plants, but also of the fungi that inhabited this paleoecosystem. In this paper we report the first unequivocal evidence of arbuscules in an endomycorrhizal symbiosis. A new genus, Glomites, is characterized by extraradical, aseptate hyphae with a two-parted wall, and an intraradical, highly branched network of thin-walled hyphae. Hyphal branches produce terminal, elongate-globose multilayered spores that lack a basal septum. Other hyphae penetrate cell walls and form arbuscules. Arbuscules are morphologically identical to those of living arbuscular mycorrhizae (AM) in consisting of a basal trunk and highly dichotomous distal branches that form a bush-like tuft. Arbuscules are confined to a narrow band of specialized thinwalled cells in the outer cortex that continue to be meristematic. Features of the fossil biotroph are compared with those of extant arbuscular mycorrhizae. Although interpretations regarding the evolution of mycorrhizal mutualisms continue to be speculative, the demonstration of arbuscules in the Early Devonian indicates that nutrient transfer is an ancient phenomenon that may have been in existence when plants invaded the land

    Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism

    Get PDF
    We describe a perithecial, pleomorphic ascomycetous fungus from the Early Devonian (400 mya) Rhynie chert; the fungus occurs in the cortex just beneath the epidermis of aerial stems and rhizomes of the vascular plant Asteroxylon. Perithecia are nearly spherical with a short, ostiolate neck that extends into a substomatal chamber of the host plant; periphyses line the inner surface of the ostiole. The ascocarp wall is multilayered and formed of septate hyphae; extending from the inner surface are elongate asci interspersed with delicate paraphyses. Asci appear to be unitunicate and contain up to 16 smooth, uniseriate-biseriate ascospores. The method of ascospore liberation is unknown; however, the tip of the ascus is characterized by a narrow, slightly elevated circular collar. Ascospores appear 1–5 celled, and germination is from one end of the spore. Also present along the stems and interspersed among the perithecia are acervuli of conidiophores that are interpreted as the anamorph of the fungus. Conidiogenesis is thallic, basipetal and probably of the holoarthric-type; arthrospores are cube-shaped. Some perithecia contain mycoparasites in the form of hyphae and thick-walled spores of various sizes. The structure and morphology of the fossil fungus is compared with modern ascomycetes that produce perithecial ascocarps, and characters that define the fungus are considered in the context of ascomycete phylogeny

    An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert.

    Get PDF
    Funder: Biotechnology and Biological Sciences Research CouncilThe Early Devonian Rhynie chert preserves the earliest terrestrial ecosystem and informs our understanding of early life on land. However, our knowledge of the 3D structure, and development of these plants is still rudimentary. Here we used digital 3D reconstruction techniques to produce the first well-evidenced reconstruction of the structure and development of the rooting system of the lycopsid Asteroxylon mackiei, the most complex plant in the Rhynie chert. The reconstruction reveals the organisation of the three distinct axis types - leafy shoot axes, root-bearing axes, and rooting axes - in the body plan. Combining this reconstruction with developmental data from fossilised meristems, we demonstrate that the A. mackiei rooting axis - a transitional lycophyte organ between the rootless ancestral state and true roots - developed from root-bearing axes by anisotomous dichotomy. Our discovery demonstrates how this unique organ developed and highlights the value of evidence-based reconstructions for understanding the development and evolution of the first complex vascular plants on Earth

    Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert

    Get PDF
    This is the publisher's version, which is being shared with permission. The original version is available from: http://dx.doi.org/10.1007/s11557-008-0573-1Scutellosporites devonicus from the Early Devonian Rhynie chert is the only fossil glomeromycotan spore taxon known to produce a germination shield. This paper describes a second type of glomeromycotan spore with a germination shield from the Rhynie chert. In contrast to S. devonicus, however, these spores are acaulosporoid and develop laterally in the neck of the sporiferous saccule. Germination shield morphology varies, from plate-like with single or double lobes to tongue-shaped structures usually with infolded margins that are distally fringed or palmate. Spore walls are complex and appear to be constructed of at least three wall groups, the outermost of which includes the remains of the saccule. The complement of features displayed by the fossils suggests a relationship with the extant genera Ambispora, Otospora, Acaulospora or Archaeospora, but which of these is the closest extant relative cannot be determined. The acaulosporoid spores from the Rhynie chert document that this spore type was in existence already ∼400 mya, and thus contribute to a more complete understanding of the evolutionary history of the Glomeromycota. This discovery pushes back the evolutionary origin of all main glomeromycotan groups, revealing that they had evolved before rooted land plants had emerged

    Technology transfer model for Austrian higher education institutions

    Get PDF
    The aim of this paper is to present the findings of a PhD research (Heinzl 2007, Unpublished PhD Thesis) conducted on the Universities of Applied Sciences in Austria. Four of the models that emerge from this research are: Generic Technology Transfer Model (Sect. 5.1); Idiosyncrasies Model for the Austrian Universities of Applied Sciences (Sect. 5.2); Idiosyncrasies-Technology Transfer Effects Model (Sect. 5.3); Idiosyncrasies-Technology Transfer Cumulated Effects Model (Sect. 5.3). The primary and secondary research methods employed for this study are: literature survey, focus groups, participant observation, and interviews. The findings of the research contribute to a conceptual design of a technology transfer system which aims to enhance the higher education institutions' technology transfer performance. © 2012 Springer Science+Business Media, LLC

    Ärztliches Verordnungsverhalten im DMP "Diabetes mellitus Typ 2" in Nordrhein

    No full text
    • …
    corecore