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Abstract The Early Devonian Rhynie chert preserves the earliest terrestrial ecosystem and

informs our understanding of early life on land. However, our knowledge of the 3D structure, and

development of these plants is still rudimentary. Here we used digital 3D reconstruction techniques

to produce the first well-evidenced reconstruction of the structure and development of the rooting

system of the lycopsid Asteroxylon mackiei, the most complex plant in the Rhynie chert. The

reconstruction reveals the organisation of the three distinct axis types – leafy shoot axes, root-

bearing axes, and rooting axes – in the body plan. Combining this reconstruction with

developmental data from fossilised meristems, we demonstrate that the A. mackiei rooting axis – a

transitional lycophyte organ between the rootless ancestral state and true roots – developed from

root-bearing axes by anisotomous dichotomy. Our discovery demonstrates how this unique organ

developed and highlights the value of evidence-based reconstructions for understanding the

development and evolution of the first complex vascular plants on Earth.

Introduction
The Silurian–Devonian terrestrial revolution saw the evolution of vascular plants with complex bodies

comprising distinct roots, root-bearing organs, shoots, and leaves from morphologically simpler

ancestors characterised by networks of undifferentiated axes (Bateman et al., 1998; Gensel and

Edwards, 2001; Kenrick and Crane, 1997; Stewart and Rothwell, 1993; Xue et al., 2018). The

407-million-year-old, Pragian–?earliest Emsian, Early Devonian (Wellman, 2006) Rhynie chert fossil

site provides a unique insight into the structure of plants during this key time in plant evolution. The

Rhynie chert preserves an entire Early Devonian hot spring ecosystem, where plants, animals, fungi,

and microbes are preserved in situ (Edwards et al., 2018; Garwood et al., 2020; Rice et al., 2002;

Strullu-Derrien et al., 2019; Wellman, 2018). The exceptional preservation has been crucial for our

understanding of early land plant evolution because it is the earliest time point in the fossil record

where cellular details of rhizoid-based rooting systems, germinating spores, and fossilised meristems

are preserved (Edwards, 2003; Hetherington and Dolan, 2018a; Hetherington and Dolan, 2018b;

Kerp, 2018; Lyon, 1957; Taylor et al., 2005). Most of the detailed cellular information about these

organisms comes from sectioned material. While the cellular detail that can be observed in these

sections allows high-resolution reconstruction of tissue systems, the three-dimensional relationship

between the cells, tissue, and organs is obscured. This makes generating accurate reconstructions of

body plans difficult (Edwards, 2003; Kidston and Lang, 1921). Furthermore, reconstructions that

have been published are based on combining material from thin sections from multiple individuals

(Kidston and Lang, 1921). These sampling problems mean that key features of the body plans of
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these organisms are missing in reconstructions. This is particularly problematic for larger, more com-

plex species in the Rhynie chert, such as the lycopsid Asteroxylon mackiei (Bhutta, 1969;

Edwards, 2003; Edwards et al., 2018; Hetherington and Dolan, 2018a; Kerp, 2018; Kerp et al.,

2013; Kidston and Lang, 1920; Kidston and Lang, 1921).

A. mackiei has been reconstructed as a plant that is approximately 30 cm high (Bhutta, 1969;

Edwards, 2003), with highly branched shoot and rooting systems (Chaloner and MacDonald, 1980;

Kerp, 2018; Kerp et al., 2013; Kidston and Lang, 1920; Kidston and Lang, 1921). It holds an

important phylogenetic position for understanding root and leaf evolution in lycophytes because it is

a member of the earliest diverging lineage of the lycopsids, the Drepanophycales (Kenrick and

Crane, 1997), and both the rooting axes and leaves of A. mackiei developed some but not all defin-

ing characteristics of roots and leaves in more derived species (Bower, 1908; Hetherington and

Dolan, 2018a; Kenrick, 2002; Kidston and Lang, 1920). However, the precise number of distinct

axis types and their interconnection is still unclear (Bhutta, 1969; Kidston and Lang, 1920;

Kidston and Lang, 1921). Without a complete understanding of the growth habit of A. mackiei, it is

not possible to compare its structure with living lycopsids or other drepanophycalean lycopsids

found in Devonian compression fossils. The drepanophycalean lycopsids are the earliest group of

land plants in the fossil record with complex body plans comprising distinct rooting axes, root-bear-

ing organs, and leafy shoots (Gensel et al., 2001; Gensel and Edwards, 2001; Hueber, 1992;

Kenrick and Crane, 1997; Lang and Cookson, 1935; Matsunaga and Tomescu, 2016;

Matsunaga and Tomescu, 2017; Stewart and Rothwell, 1993). Their evolution, radiation, and

spread across all continents contributed to the transformation of the terrestrial environment through

their impact on soil formation and stabilisation, surface hydrology, and silicate weathering

(Algeo and Scheckler, 1998; Gibling and Davies, 2012; Matsunaga and Tomescu, 2016;

Xue et al., 2016). Given the recognition of the importance of the drepanophycalean lycopsids in the

evolution of complex body plans and changes to global nutrient and hydrological cycles, we gener-

ated a reconstruction of the 3D structure of A. mackiei based entirely on serial sections from com-

plete specimens fossilised in situ.

Here we report the 3D reconstruction of A. mackiei based on both morphology and anatomy of

two different plants. This reconstruction allowed us to define the 3D organisation of the three axis

types of the A. mackiei body and to describe how the rooting system developed.

Results
To discover the structure and infer the development of the lycopsid A. mackiei, we produced a

series of 31 consecutive thick sections through a block of Rhynie chert that preserved a branched

network of connected A. mackiei axes in situ (Figure 1—figure supplement 1, Figure 1—figure

supplement 2). Using images of these thick sections, we digitally reconstructed the A. mackiei plant

in a volume of 4.8 cm in length, 3.5 cm in width, and 2.8 cm in height (Figure 1A,B,G Video 1),

which, to our knowledge, represents the largest evidence-based reconstruction for any Rhynie chert

plant to date. We distinguished three distinct axis types in a single individual plant that we

designate: leafy shoot axes, root-bearing axes, and rooting axes.

Leafy shoot axes
The majority of the axes in our reconstruction were leafy shoots (Figure 1A,B, Video 1). Leafy shoot

axes developed leaves, abundant stomata, and a characteristic internal anatomy including a stellate

xylem, many leaf traces, and trabecular zone as reported for A. mackiei (Bhutta, 1969; Kerp, 2018;

Kerp et al., 2013; Kidston and Lang, 1920; Kidston and Lang, 1921; Lyon, 1964; Figure 1C,D).

The presence of a geopetally infilled void in the sections allowed us to determine the orientation of

axes relative to the gravitational vector because the silica that partly fills the void space acts as a

spirit level indicating the direction of the gravity vector when it was deposited (Trewin and Fayers,

2015). The main axis present in each of the thick sections was horizontal (plagiotropic) (Figure 1—

figure supplement 1). Four leafy shoot axes with similar anatomy attached to the main axis at ani-

sotomous branch points; an anisotomous branch point is a description of morphology and means

that the diameters of the two axes connected at a branch point are different (Gola, 2014; Imai-

chi, 2008; Ollgaard, 1979; Yin and Meicenheimer, 2017). The diameter of the main plagiotropic

leafy shoot was ca. 1 cm and the thinner leafy shoots attached at branch points were ca. 0.6 cm.

Hetherington et al. eLife 2021;10:e69447. DOI: https://doi.org/10.7554/eLife.69447 2 of 18

Research article Evolutionary Biology Plant Biology

https://doi.org/10.7554/eLife.69447


Figure 1. The body plan of Asteroxylon mackiei was composed of three distinct axes: leafy shoot axes, root-bearing axes, and rooting axes. (A, B) 3D

reconstruction of A. mackiei based on a series of 31 thick sections. (C) Representative examples of transverse sections through the three main axis types

colour coded to match their colours in the 3D reconstruction (A, B), leafy shoot axes in green, root-bearing axes in blue, and rooting axes in purple. (D-

F) Line drawings of representatives of each of the three main axis types illustrating their anatomy. Examples of two representative leafy shoots (D), root-

bearing axes (E) and rooting axes (F). (G) An artist’s impression of the complete fossil rooting system reconstructed from thick sections. (H-J) Example

of a plagiotropic leafy shoot exposed on the surface of a block of chert Pb 2020_01. (H) End on view of the block of chert with A. mackiei leafy shoot

axis cut in transverse section. (I) Same block as in (H) showing the surface of the axis with brown cuticle and sparse covering of leaves. (J) Higher

magnification image of white box in (I) showing a single leaf base and abundant stomata. Line drawings of A. mackiei axes based on specimen

Figure 1 continued on next page

Hetherington et al. eLife 2021;10:e69447. DOI: https://doi.org/10.7554/eLife.69447 3 of 18

Research article Evolutionary Biology Plant Biology

https://doi.org/10.7554/eLife.69447


Some of the thinner leafy shoots were orientated closer to the vertical, indicating orthotropic growth

orientation (Figure 1A,B,G). Although our reconstruction did not include connections between these

orthotropic axes and previously described fertile axes, it is likely that some of these orthotropic leafy

shoot axes were connected to fertile axes (Bhutta, 1969; Kerp et al., 2013; Lyon, 1964). The most

noticeable differences between the plagiotropic leafy shoots described here and orthotropic shoots

described previously (Bhutta, 1969; Kerp et al., 2013; Kidston and Lang, 1920; Kidston and

Lang, 1921; Lyon, 1964) are that the xylem was less lobed and there were fewer leaf traces in the

plagiotropic leafy shoot axes than in the orthotropic leafy shoot axes (Figure 1D). Fewer leaf traces

in plagiotropic regions is consistent with a lower leaf density on these axes than in orthotropic axes,

a feature demonstrated in detail by the discovery of an isolated plagiotropic leafy shoot with sparse

covering of leaves preserved on the exterior of a block of chert (Figure 1H,J). We conclude that A.

mackiei developed plagiotropic and orthotropic leafy shoot axes with similar anatomy.

Root-bearing axes
Root-bearing axes of A. mackiei were attached to leafy shoot axes at anisotomous branch points,

where the thinner daughter axis developed as a root-bearing axis and the thicker daughter axis

developed as a leafy shoot axis (Figures 1 and 2). Diameters of root-bearing axes were ca. 0.35 cm

compared to leafy shoots axes typically over 0.6 cm. In one of the five examples (Figure 2A–C), the

root-bearing axis was attached directly to the main leafy shoot axis. In the four other examples

(Figure 2D–I), root-bearing axes were attached to side branches of the main leafy shoot. These

branches were termed first-order leafy shoots because they were separated from the main shoot by

a single branching event. Root-bearing axes attached to first-order leafy shoot axes close to where

the latter attached to the main shoot. The branch arrangement where two adjacent anisotomous

branches originate close to each other is termed k-branching (Chomicki et al., 2017;

Edwards, 1994; Gensel et al., 2001; Gensel and Berry, 2001; Gerrienne, 1988; Matsunaga and

Tomescu, 2016; Matsunaga and Tomescu, 2017). The root-bearing axes of the Drepanophycalean

lycopsid Sengelia radicans (Matsunaga and

Tomescu, 2016; Matsunaga and Tomescu,

2017) are attached to leafy shoot axes at

k-branch points. In both A. mackiei and S. radi-

cans, root-bearing axes developed an epidermis

and cuticle with occasional stomata and scale

leaves. In the root-bearing axes of A. mackiei

where anatomy could be investigated the xylem

strand was elliptical, not lobed as in leafy shoot

axes, and there were few or no leaf traces, which

distinguishes them from leafy shoots in which

leaf traces were abundant (Figure 1E). Root-

bearing axes were aligned with the gravity vec-

tor, indicating strong positive gravitropic growth

(Figures 1A,B and 2). These differences in anat-

omy and morphology between root-bearing

axes and leafy shoots demonstrate that root-

bearing axes were a distinct axis type and not

merely a transitional zone between two axis

types as previously suggested (Bhutta, 1969;

Kidston and Lang, 1920; Kidston and Lang,

Figure 1 continued

accession codes: GLAHM Kid. 2479 and Pb 4181 (D), Bhutta Collection RCA 13 and RCA 113 (E), GLAHM Kid 2471 and GLAHM Kid 2477 (F). 3D scale

bar 1 � 0.1 � 0.1 cm (A, B, G). Scale bars, 2 mm (C–F, H, I), 1 mm (J). (G) Illustrations by Matt Humpage (https://twitter.com/Matt_Humpage).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Geopetally infilled void allowed growth orientation to be established.

Figure supplement 2. A. mackiei axes were preserved in original growth position.

Video 1. 3D reconstruction of A.mackiei based on

serial thick sections. A 3D reconstruction based on a

series of 31 thick sections deposited in the collection of

the Forschungsstelle für Geologie und Paläontologie,

Westfälische Wilhelms-Universität, Münster, Germany

under the accession numbers Pb 4161–4191. Leafy

shoot axes in green, root-bearing axes in blue, and

rooting axes in purple. 3D scale bar 1 � 0.1 � 0.1 cm.

https://elifesciences.org/articles/69447#video1
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1921). The apex of a root-bearing axis had not been described previously. We searched for apices

on axes with the characters of root-bearing axes and discovered an isolated bifurcating axis with two

apices (Figure 2J,K). The apices were assigned to A. mackiei because of the presence of leaves on

the parent axis (Figure 2J, arrowheads) and a small leaf on the flank of the upper apex (Figure 2J,

K), A. mackiei is the only Rhynie chert plant with leaves. Both apices were covered by an unbroken

cuticle, and a single small leaf was present on the upper apex, which together demonstrate that

these are apices of root-bearing axes and not apices of rooting axes that lack leaves and cuticles

(Hetherington and Dolan, 2018a), or leafy shoots where the apex is covered by a large number of

leaves (Edwards, 2003; Hueber, 1992; Kerp, 2018; Kerp et al., 2013). These apices were found in

a single thin section that was not part of a set of serial sections and therefore it was not possible to

reconstruct the apex in 3D. The root-bearing axes described here are similar to the axes described

as either root-bearing axes (Matsunaga and Tomescu, 2016; Matsunaga and Tomescu, 2017) or

rhizomes (Rayner, 1984; Schweitzer, 1980; Schweitzer and Giesen, 1980; Xu et al., 2013) in other

members of the Drepanophycales. The occurrence of these root-bearing axes in A. mackiei and

Figure 2. Root-bearing axes attached to leafy shoots at anisotomous branch points. Images showing the attachment of root-bearing axes shown in

blue to leafy shoots shown in green based on our 3D reconstruction (A, D–F) and the thick sections used to create the reconstruction (B, C, G–I). (A) A

root-bearing axis shown in blue attached to the side of the larger plagiotropic leafy shoot axis shown in green. (B) The thick section represented by

arrow one in (A) showing a transverse section through the leafy shoot at the point of branching. The black xylem trace of the rooting axis is located to

the left of the cross shaped xylem at the centre of the leafy shoot axis. (C) Thick section represented by arrow two in (A) showing the free root-bearing

axis with small rounded xylem trace compared to the larger cross shaped xylem in the leafy shoot. (D-F) Examples based on the reconstruction of A.

mackiei of root-bearing axes attached to first order leafy shoots close to their attachment with the main leafy shoot. In each case, the root-bearing axes

are smaller in diameter than the leafy shoots they are attached to and all root-bearing axes are aligned with the gravity vector. (G-I) Examples of thick

sections showing the anisotomous branch point with attachment of a root-bearing axis and leafy shoot, the position of each thick section is illustrated

on the reconstruction in (D), with arrow 1 (G), 2 (H), and 3 (I). (J) A bifurcating root-bearing axis with two apices attached to a larger leafy axis (leaves on

large axis highlighted with arrowheads). (K) Higher magnification image of (J), showing the continuous cuticle covering the two apices and small leaf

attached to the lower flank of the upper apex. 3D scale bar 1 � 0.1 � 0.1 cm (D–F), 2 � 1 � 1 mm (A). Scale bars, 5 mm (G–I), 2 mm (B, C) 1 mm (J), 500

mm (K). Specimen accession codes: Pb 4178 (B), Pb 4177 (C), Pb 4164 (G), Pb 4163 (H), Pb 4162 (I), Pb 2020_02 (J, K).
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multiple other species highlights the conservation of body plans among members of the

Drepanophycales.

Rooting axes
A. mackiei rooting axes are similar to roots of extant lycopsids. However, they are designated root-

ing axes because they lack root hairs and their meristems lack a root cap and are consequently inter-

preted as transitional to the roots of extant plants (Hetherington and Dolan, 2018a;

Hetherington and Dolan, 2019). These rooting axes include structures called rhizomes

(Bhutta, 1969), small root-like rhizomes (Kidston and Lang, 1920; Kidston and Lang, 1921), and

rooting axes (Hetherington and Dolan, 2018a; Hetherington and Dolan, 2019) of A. mackiei from

previous descriptions of plant fragments. Rooting axes were always less than 2 mm in diameter and

frequently less than 1 mm and were highly branched (Bhutta, 1969; Hetherington and Dolan,

2018a; Kidston and Lang, 1920; Kidston and Lang, 1921). Leaves, leaf traces, stomata, and

cuticles were never found on rooting axes, even when the epidermis was well preserved

(Kidston and Lang, 1920). The epidermis was frequently missing, suggesting that it was lost in older

axes and the outer cortex was often limited to one or two cell layers (Figure 1F; Kidston and Lang,

1920). We found a single well-preserved highly branched rooting axis in our reconstruction

Figure 3. Rooting axes attached to root-bearing axes at anisotomous branch points. (A) Connection between a rooting axis in purple and root-bearing

axis shown in blue based on the 3D reconstruction. (B–D) Three thick sections showing successive stages of the same root-bearing axis preserving the

attachment of the rooting axis at an anisotomous branch point. The positions of the three thick sections in the reconstruction (A) are shown with the

three numbered arrowheads 1 (B), 2 (C), and 3 (D). (E, F) Rooting axes branched profusely, through at least four orders of branching. (F) Example of

branched rooting axis (marked by arrowhead in E). 3D scale bar 1 x 0.1 x 0.1 cm (A), 5 x 1 x 1 mm (E). Scale bars, 2 mm (B, C, D, F). Specimen accession

codes: Pb 4174 (B, F), Pb 4175 (C), Pb 4177 (D).
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(Figure 3A–F). This rooting axis was attached to a root-bearing axis at an anisotomous branch point

(Figure 3C). There was a circular xylem strand at the centre of the rooting axis. The diameter of the

rooting axis where it attached to the root-bearing axis was ca. 2 mm but decreased in size distally at

successive branch points. Leaves, leaf traces, stomata, and cuticles were never observed on the root-

ing axis. The rooting axis was weakly gravitropic in contrast to the strong gravitropic growth

observed in root-bearing axes (Figure 3A,E). The profuse branching of the rooting axis is evident

with over four orders of branching preserved in less than 1 cm in our reconstruction (Figure 3E). We

found no evidence that other axis types developed from the rooting axis. The morphological and

anatomical boundary between the root-bearing axis and rooting axis was clear (Figure 3C); it

involved the change from strong gravitropic growth to weak gravitropic growth, and the absence of

scale leaves, stomata, and a well-marked cuticle all found on root-bearing axes but absent on root-

ing axes. This suggests that the boundary between the two axis types is defined at the point of

branching and not in a continuum along a single axis. The rooting axis and its attachment to root-

bearing axes described here correspond to the axes termed, roots (Matsunaga and Tomescu,

2016; Matsunaga and Tomescu, 2017; Schweitzer, 1980; Schweitzer and Giesen, 1980), root-like

axes (Gensel et al., 2001; Rayner, 1984), and rootlets (Xu et al., 2013) in other members of the

Drepanophycales. This suggests that the body plan of A. mackiei was similar to other members of

the Drepanophycales.

Our new reconstruction from serial thick sections through an individual A. mackiei plant demon-

strates that the A. mackiei body plan consisted of three distinct axis types – leafy shoot axes, root-

bearing axes, and rooting axes – each with characteristic anatomy and morphology.

Dichotomous origin of rooting axes
The rooting axes of A. mackiei hold a key position for interpreting the origin of roots in lycopsids

because they were transitional between the ancestral rootless state and the derived state character-

ised by true roots with caps as found in extant lycopsids (Hetherington and Dolan, 2018a;

Hetherington and Dolan, 2019). Our new reconstruction enables interpretation of these rooting

axes and comparison with the rooting axes variously called roots, root-like axes, or rootlets in other

members of the Drepanophycales that have been reported in the literature. Our reconstruction dem-

onstrates that a number of characters are shared between the rooting axes of A. mackiei and rooting

axes of other members of the Drepanophycales, including their attachment to root-bearing axes,

weak gravitropic growth, and profuse dichotomous branching.

These shared characters suggest that the rooting system of A. mackiei was representative of the

Drepanophycales and that inferences made with the exceptional preservation of A. mackiei can elu-

cidate the characteristics of other members of the Drepanophycales that are preserved primarily as

compression fossils. Our new reconstruction indicates that rooting axes connected to root-bearing

axes at anisotomous branch points. Based on development of extant lycopsids (Bierhorst, 1971;

Fujinami et al., 2021; Gola, 2014; Guttenberg, 1966; Harrison et al., 2007; Hetherington and

Dolan, 2017; Imaichi, 2008; Imaichi and Kato, 1989; Ogura, 1972; Ollgaard, 1979;

Spencer et al., 2021; Yi and Kato, 2001; Yin and Meicenheimer, 2017), there are two modes of

branching that could produce anisotomous branch point morphology, endogenous branching, or

dichotomous branching. Endogenous branching is the mode of branching where the meristem of

the new axis develops from the internal tissues of the parent axis and breaks through the parent tis-

sue to emerge, a mode of development typical of the initiation of roots of extant lycopsid species.

Dichotomous branching is the mode of branching where the parent meristem splits in two to pro-

duce two daughter axes, a mode of development typical of roots, shoots, and rhizophores in extant

lycopsids (Bierhorst, 1971; Bruchmann, 1874; Gola, 2014; Guttenberg, 1966; Harrison et al.,

2007; Hetherington and Dolan, 2017; Imaichi, 2008; Imaichi and Kato, 1989; Ogura, 1972; Oll-

gaard, 1979; Spencer et al., 2021; Wigglesworth, 1907; Yi and Kato, 2001; Yin and Meicen-

heimer, 2017). To investigate which mode of development operated in A. mackiei, we examined

anatomy of branch points.

If the rooting axes developed by endogenous branching from root-bearing axes, there would

likely be a disruption to the tissues of the leafy shoot and evidence that the vascular trace of the

root-bearing axes connected at right angles to the vascular trace of the leafy shoot (Bruch-

mann, 1874; Guttenberg, 1966; Imaichi, 2008; Ogura, 1972; Van Tieghem and Douliot, 1888;

Wigglesworth, 1907; Yi and Kato, 2001). Our thick sections only provided a small organic
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connection between the two axes (Figure 3C) limiting our ability to investigate the anatomical

changes associated with branching. We therefore searched other Rhynie chert collections for rooting

axes attached to root-bearing axes at anisotomous branching points. We reinvestigated an example

originally described as a branching rhizome by Bhutta, 1969. The presence of scale leaves, a small

number of leaf traces, and clear epidermis and cuticle on the main axis suggested that it was a root-

bearing axis. Attached to this root-bearing axis was a smaller axis that we interpret as a rooting axis

because of its rounded xylem, poorly preserved epidermis and the lack of both cuticle and root cap

(Figure 4, Figure 4—figure supplement 1). We produced a 3D reconstruction of the anisotomous

branch point that connects the two axes based on 119 peels (Figure 4, Video 2). Tissues were con-

tinuous between the root-bearing axis and rooting axis. The vascular trace for the rooting axis was

seen to branch off and then run parallel to the main vascular trace before gradually arcing into the

rooting axis (Figure 4). These characteristics, especially the dichotomy of the vascular trace, suggest

that rooting axes developed from root-bearing axes by dichotomous branching.

A

B

C

D

E

F

G

1

2

3

4

5

Figure 4. Rooting axes developed from root-bearing axes by dichotomous branching. (A) 3D reconstruction based

on 119 peels from the A. Bhutta peel collection illustrating the attachment of a rooting axis to a root-bearing axis

at an anisotomous branch point. Above the branch point the root-bearing axis, in blue, is covered by small-scale

leaves indicated in dark green that are absent below the branch point. (B) Same 3D reconstruction as in (A) but

with a transparent outline of the axis so the branching of the central xylem trace can be seen in yellow. (C–G)

Images of representative peels used to create the 3D reconstruction showing the anatomical changes associated

with branching, including the branching of the xylem strand (C, D), and the continuity of tissues between the root-

bearing axis and the rooting axis (E, F). The positions of the peels (C–G) are shown with the numbered arrowheads

1–5 in (A). 3D scale bar 1 � 0.1 � 0.1 mm (A, B). Scale bars, 1 mm (C–G). A. Bhutta peel collection numbers RCA

14 (C), RCA 61 (D), RCA 81 (E), RCA 103 (F), RCA 114 (G).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Rooting axes lacked cuticles and root caps.
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While branching evidence in our reconstruc-

tion is consistent with the development of root-

ing axes from root-bearing axes by dichotomy,

we tested if there was evidence for endogenous

development because roots originate endoge-

nously in extant lycopsids. Therefore, we

searched for meristems of rooting axes pre-

served soon after they originated from root-

bearing axes. We identified two fossilised A.

mackiei meristems on a single thin section. This

thin section preserves a large A. mackiei leafy

shoot axis ca. 5 mm in diameter with stellate

xylem cut in transverse section at the top of the

image (Figure 5A, green arrowhead). Attached

to the leafy shoot axis is a smaller root-bearing

axis ca. 1.9 mm in diameter close to the attach-

ment with the leafy shoot. This axis is identified

as a root-bearing axis by the presence of a

small scale leaf (Figure 5A, blue arrowhead, B),

and its orientation aligned with the gravity vec-

tor based on a geopetally infilled void (Figure 5—figure supplement 1). Close to the base of the

thin section are two apices on either side of the root-bearing axis (Figure 5A, white arrowheads).

We interpret these as meristems because of their domed structure and the large number of small

cells close to the apices. Given the attachment of these meristems to root-bearing axes and their

small size, we interpret them as meristems of rooting axes. Cellular organisation of the promeristems

(Figure 5C–E, Figure 5—figure supplement 2) is poorly preserved compared to other meristems

we described (Hetherington and Dolan, 2018a), but the overall organisation including cell files run-

ning from the central vascular trace, and a cuticle covering the apices can be clearly recognised.

There is no root cap as previously reported for rooting axes (Hetherington and Dolan, 2018a). Cell

files are continuous between the root-bearing axes and rooting axes, and there is no evidence that

the rooting axes initiated by endogenous branching and broke through the ground or dermal tissues

of the root-bearing axes. The organisation of cells in these meristems is consistent with our hypothe-

sis based on 3D reconstructed anatomy that the rooting axes developed by dichotomous branching

from root-bearing axes.

Discussion
We discovered that A. mackiei rooting axes originate by dichotomous branching. Furthermore, the

branch connecting rooting axes and root-bearing axes was always anisotomous. This finding is signif-

icant because roots do not originate by dichotomy in extant lycopsids. Instead, roots of extant lycop-

sids originate endogenously from shoots, rhizophores, and rhizomorphs (Bruchmann, 1874;

Guttenberg, 1966; Hetherington and Dolan, 2017; Imaichi, 2008; Imaichi and Kato, 1989;

Ogura, 1972; Yi and Kato, 2001), and in rare cases by exogenous development in embryos, proto-

corms, or tubers where dichotomous branching does not occur (Bower, 1908; Hetherington and

Dolan, 2017). The origin of A. mackiei rooting axes by anisotomous dichotomy was therefore differ-

ent from the origin of roots in extant lycopsids, and this developmental mechanism is now extinct

(Figure 6).

Dichotomous branching giving rise to axes of different types is an
ancient characteristic of lycophyte rooting systems
These reconstructions highlight that dichotomous branching, where the daughter axes produced at

a branch point were of different types, was a characteristic of the rooting system of A. mackiei.

Other Silurian and Devonian fossils suggest that this mode of branching may be a shared feature of

many rooting systems in early-diverging lycophytes.

Nothia aphylla is an extinct early lycophyte closely related to the lycopsids (Kenrick and Crane,

1997; Figure 6). Its rooting system consisted of horizontal (plagiotropic) sporophyte axes with

Video 2. 3D reconstruction of A.mackiei based on

serial peels. A 3D reconstruction based on 119 peels

from the A. Bhutta peel collection, University of Cardiff,

illustrating the attachment of a rooting axis (purple) to

a root-bearing axis (blue) at an anisotomous branch

point. Small- scale leaves on the root-bearing axis

indicated in dark green 3D scale bar 1 � 0.1 � 0.1 mm.

https://elifesciences.org/articles/69447#video2
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Figure 5. Fossilised meristems preserve evidence that rooting axes developed from root-bearing axes by anisotomous dichotomy. (A–E) A. mackiei

axes preserving connection between a leafy shoot axis, root-bearing axis and two rooting axes apices. (A) Photograph of thin section NHMUK 16433

showing a large A. mackiei axis with stellate xylem cut in transverse section in the top left and highlighted with the green arrowhead, and attached

root-bearing axis. On the root-bearing axis (A) the position of a scale leaf (B), is highlighted with a blue arrowhead and the two rooting axes meristems

Figure 5 continued on next page
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rhizoids, called rhizoidal sporophyte axes, that were both morphologically and anatomically different

from the vertical (orthotropic) shoot axes (Hetherington and Dolan, 2018b; Kerp et al., 2001). The

plagiotropic axes attach to the base of orthotropic axes at branch points (Kerp et al., 2001), sug-

gesting that the transitions between orthotropic and plagiotropic growth occurred at branch points.

This demonstrates that axis type could change at branch points in N. aphylla as it does in A. mackiei.

The demonstration that this mode of branching was present outside of the lycopsids is consistent

with it being an ancestral feature within the lycophytes.

Change in axis type at branch points was also a characteristic of the rooting systems of the zoster-

ophylls, the other major grouping of extinct lycophytes. Zosterophylls are a paraphyletic or polyphy-

letic grouping of early-diverging lycophytes; however, most species group into a single clade sister

to lycopsids (Kenrick and Crane, 1997; Figure 6). Many zosterophylls developed extensive rooting

systems both morphologically and anatomically different from their shoot systems (Edwards, 2003;

Gensel et al., 2001; Hao et al., 2010; Hao et al., 2007; Kotyk and Basinger, 2000; Li, 1992). In a

number of fossils, rooting systems originated at branch points where one axis maintained a shooting

character and the other acquired rooting characteristics. In the zosterophyll Bathurstia denticulate

(Gensel et al., 2001; Kotyk and Basinger, 2000), rooting axes formed at k-branching points on

shoot axes. This pattern of rooting axis development is also found in drepanophycalean lycopsids,

and we show that it also occurs in the leafy shoot axes in A. mackiei. In a number of other Zostero-

phyllum species, axes are only identifiable as rooting axes because of changes in morphology or

growth direction at a branch point where the two daughter axes are morphologically different from

the original axis or grow in a different direction to the original axis; the rooting axis grows down-

wards, while the sister axis grows horizontally (Gensel et al., 2001; Hao et al., 2007; Hao et al.,

2010). Finally, subordinate branching (Kenrick and Crane, 1997) in taxa such as Gosslingia

(Edwards, 1970), Tarella (Edwards and Kenrick, 1986), Deheubarthia (Edwards et al., 1989), and

Hsüa (Li, 1992) indicates that branching could result in the development of axes morphologically

and anatomically different from the original axis, although not always associated with the origin of

rooting systems. The frequent occurrence of rooting systems originating at branch points in the zos-

terophylls where axis type changed provides further support for it being an ancestral feature of all

lycophytes. Testing this hypothesis is difficult due to the limited number of characteristics that can

be used to distinguish between axes with a presumed rooting and shooting function in compression

fossils (Gensel et al., 2001). However, it may be an ancestral character of lycophytes because this

mode of branching is present in derived zosterophylls, such as Bathurstia denticulate, the drepano-

phycalean lycopsids and a number early-diverging lycophytes.

The roots of lycopsids evolved in a stepwise fashion, via transitional rooting axes similar to those

preserved in A. mackiei (Figure 6) that originated at anisotomous branch points. The anisotomous

origin of rooting axes is also likely to have occurred in other early-diverging lycophytes. However,

this character does not occur in extant lycopsids. We therefore conclude that the origin of rooting

axes through anisotomous dichotomy, a character of early-diverging lycophytes, has been lost dur-

ing the evolution of lycopsids.

Conclusions
We draw three significant conclusions from our 3D reconstruction of A. mackiei. (1) The body plan of

A. mackiei was similar to the cosmopolitan members of the Drepanophycales found across America,

Europe, and China in the Early and Middle Devonian (Gensel et al., 2001; Li and Edwards, 1995;

Matsunaga and Tomescu, 2016; Matsunaga and Tomescu, 2017; Rayner, 1984; Schweitzer, 1980;

Figure 5 continued

are highlighted with white arrowheads. (C–E) Rooting axis meristems marked by white arrowheads in (A) the left arrowhead (C) and right (D, E). (D)

Well-preserved rooting axis meristem showing continuous cell files from the central vascular trace into the apex, the tissues of the rooting axis are

continuous with the root-bearing axis indicating that development was by anisotomous dichotomy. Scale bars, 5 mm (A), 0.5 mm (C, D) 0.2 mm (B, E).

Specimen accession codes: NHMUK 16433 (A–E).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. A geopetally infilled void allowed growth orientation to be established.

Figure supplement 2. A. mackiei fossilised rooting axes meristems.
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Schweitzer and Giesen, 1980; Xu et al., 2013; Xue et al., 2016). This suggests that despite inhab-

iting the Rhynie geothermal wetland ecosystem (Edwards et al., 2018; Garwood et al., 2020;

Rice et al., 2002; Strullu-Derrien et al., 2019; Wellman, 2018), mechanisms of body plan construc-

tion in A. mackiei likely also operated in other Devonian Drepanophycales. (2) We demonstrate that

Drep Lyco Sel IsoZost † Noth † †

Rooting systems 

evolved separately

in the 

zosterophylls 

compared to the

 lycopsid clade

Lycophytes

Lycopsids
Rooting axes: isotomous branching, lack of cuticle, 

origin by anisotomous dichotomy, radial symmetry

True roots: root cap, root hairs, 

endogenous origin, endodermis

Root-bearing 

axes

Rhizophores
Rhizomorphs

Basal 

swellingShoots,

tubers, 

protocorms

Asteroxylon mackiei

Rhizoidal sporophyte axes

Rhizoidal sporophyte axis evolution

Root evolution

Root producing structure evolution

Rooting system origin 

 by dichotomy?

Figure 6. A. mackiei holds a key position for interpreting rooting system evolution within lycophytes. Cladogram of lycophytes with rooting system

characteristics mapped on. Taxa abbreviations, Zost, zosterophylls, Noth Nothia aphylla, Drep, Drepanophycales, Lyco, Lycopodiales, Sel,

Selaginellales, Iso, Isoetales. Extinct groups are indicated by dagger symbols (†). Cladogram after (Kenrick and Crane, 1997). A. mackiei illustration by

Matt Humpage (https://twitter.com/Matt_Humpage). Leafy shoots in the illustration are roughly 1 cm in diameter.
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rooting axes originated from root-bearing axes by dichotomy. In extant lycopsids, roots originate

endogenously from shoots or specialised root producing structures, such as rhizophores (Figure 6).

Once developed, roots, shoots, and rhizophores branch dichotomously (Chomicki et al., 2017;

Fujinami et al., 2021; Gola, 2014; Harrison et al., 2007; Hetherington and Dolan, 2017; Imai-

chi, 2008; Imaichi and Kato, 1991; Ollgaard, 1979; Yin and Meicenheimer, 2017). However, the

two daughter axes produced by dichotomous branching are always identical to the original axis: a

shoot axis may branch dichotomously to form two identical shoot axes, a root axis may branch to

form two identical root axes, and a rhizophore branches to form two identical rhizophores

(Chomicki et al., 2017; Fujinami et al., 2021; Gola, 2014; Harrison et al., 2007; Hetherington and

Dolan, 2017; Imaichi, 2008; Imaichi and Kato, 1991; Ollgaard, 1979; Yin and Meicenheimer,

2017). In A. mackiei, the root-bearing axes branched anisotomously to produce one root-bearing

axis and a rooting axis. Our findings therefore suggest that anisotomous dichotomy was key for the

development of the complex body plan of A. mackiei, which builds on previous suggestions that the

evolution of anisotomous dichotomy in land plants was a key developmental innovation for both the

evolution of leaves (Sanders et al., 2007; Stewart and Rothwell, 1993; Zimmerman, 1952) and

rooting systems (Gensel et al., 2001). (3) Finally, these findings demonstrate how 3D evidenced-

based reconstructions of the Rhynie chert plants can define how these plants grew and developed.

These reconstructions allow the body plans of Rhynie chert plants to be compared with plants pre-

served as compression fossils where body plans can be determined, but cellular anatomy is not

preserved.

Taken together, our 3D reconstruction demonstrates that the body plan of A. mackiei comprised

three distinct axis types, and we demonstrate that roots developed through anisotomous dichotomy

of a specialised root-bearing axis. This mode of rooting system development is now extinct, but

played a key role in the development of the complex rooting systems of the Drepanophycales.

Materials and methods
Specimen accession code abbreviations: Forschungsstelle für Paläobotanik, Institut für Geologie und

Paläontologie, Westfälische Wilhelms-Universität, Münster, Germany; Pb. The Hunterian, University

of Glasgow, GLAHM. Natural History Museum, London, NHMUK.

Thick section preparation
The reconstruction of A. mackiei was based on a series of 31 thick sections made from a single block

of chert collected from a trench dug in 1964. Thick sections were made by mounting the rock to 2.8

cm by 4.8 cm glass slides using thermoplastic synthetic resin and cutting with a 1 mm thick diamond

blade. The resulting thin wafer of rock was ground with silicon carbide powder to ensure a flat sur-

face, a number of specimens were released from the glass slide and turned around to grind them

down further from the other side (Hass and Rowe, 1999). Thick sections were not sealed with a

cover slip and were deposited in the collection of the Forschungsstelle für Geologie und Paläontolo-

gie, Westfälische Wilhelms-Universität, Münster, Germany, under the accession numbers Pb 4161–

4191.

3D reconstruction of A. mackiei from thick sections
To create a 3D reconstruction based on the series of thick sections, photographs of the upper and

lower surface of the thick sections were taken. Thick sections were placed on a milk glass pane

above a lightbox and incident light was provided by two lamps (Kerp and Bomfleur, 2011). The sur-

face of the specimen was covered with cedar wood oil and images were captured with a Canon

MP-E 65 mm macro lens and a Canon EOS 5D Mark IV single-lens reflex camera. Images of the full

series of thick sections were deposited on Zenodo (http://doi.org/10.5281/zenodo.4287297). Line

drawings were made of both the outline of the A. mackiei axes of interest and also the central vascu-

lar trace in each axis using Inkscape (https://inkscape.org/). Line drawings were imported into

Blender (https://www.blender.org/) and extruded in the z-dimension by 0.2 mm to turn each outline

into a 3D slice. In the model, a thick section was then represented by an upper and lower slice of 0.2

mm separated by a gap of 0.4 mm. Slices from consecutive thick sections were aligned and a 1 mm

gap was left to represent the material lost to the saw blade when making the sections. Images and
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animations of the reconstruction were made in Blender, and the 3D reconstruction was deposited on

Zenodo (http://doi.org/10.5281/zenodo.4287297).

3D reconstruction of A. mackiei from peels
A branching root-bearing axis was reconstructed from a series of RCA 1–119 from the A. Bhutta col-

lection (Bhutta, 1969) at the University of Cardiff. Four peels were missing from the series, RCA 3,

RCA 31, RCA 80, and RCA 102. Images of peels were scanned using an Epson perfection V500.

Images of the full series of peels were deposited on Zenodo (http://doi.org/10.5281/zenodo.

4287297). Line drawings were made of the outline of the A. mackiei axis of interest and also the cen-

tral vascular trace in each axis using Inkscape (https://inkscape.org/). Line drawings were imported

into blender and extruded in the z-dimension by 0.058 mm based on Bhutta, 1969. Consecutive sli-

ces were aligned to produce the 3D model, and gaps were left for the four missing peels. The 3D

reconstruction was deposited on Zenodo (http://doi.org/10.5281/zenodo.4287297).

Higher magnification images and microscopy
Thick sections were placed on a milk glass pane above a lightbox and incident light was provided by

two lamps and the surface covered in cedar wood oil (Kerp and Bomfleur, 2011). Photographs

were taken with a Canon EOS 5D Mark IV digital single-lens reflex camera mounted on a copy stand

using either a Canon MP-E 65 mm or Canon EFS 60 mm macro lens (Figure 1H–J, Figure 2B,C,G–

K, Figure 3B–D,F, Figure 1—figure supplement 1A,B, Figure 1—figure supplement 2). The pho-

tograph of thin section NHMUK 16433 (Figure 5C, Figure 5—figure supplement 1A) was taken

with a Nikon D80 camera with a 60 mm macro lens mounted on a copystand with light from below

from a lightbox. Higher magnification images were taken of the branching A. mackiei axis from the

A. Bhutta collection with a Leica M165 FC with light from above provided by a Leica LED ring illumi-

nator. (Figure 4C–G, Figure 4—figure supplement 1). Microscope images of NHMUK 16433

(Figure 5D–G, Figure 5—figure supplement 1B, Figure 5—figure supplement 2) were taken with

a Nikon Eclipse LV100ND.
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of Yunnan Province, southern china. Botanical Journal of the Linnean Society 118:163–192.

Lyon AG. 1957. Germinating spores in the rhynie chert. Nature 180:1219–1220. DOI: https://doi.org/10.1038/
1801219a0

Lyon AG. 1964. Probable fertile region of Asteroxylon mackiei K. and L. Nature 203:1082–1083. DOI: https://doi.
org/10.1038/2031082b0

Matsunaga KK, Tomescu AM. 2016. Root evolution at the base of the lycophyte clade: insights from an early
devonian lycophyte. Annals of Botany 117:585–598. DOI: https://doi.org/10.1093/aob/mcw006, PMID: 26
921730

Matsunaga KKS, Tomescu AMF. 2017. An organismal concept for Sengelia radicans gen et sp nov - morphology
and natural history of an Early Devonian lycophyte. Annals of Botany 119:1097–1113. DOI: https://doi.org/10.
1093/aob/mcw277, PMID: 28334100

Ogura Y. 1972. Comparative Anatomy of Vegetative Organs of the Pteridophytes. Gebrüder Borntraeger.
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