1,908 research outputs found

    Violation and persistence of the K-quantum number in warm rotating nuclei

    Full text link
    The validity of the K-quantum number in rapidly rotating warm nuclei is investigated as a function of thermal excitation energy U and angular momentum I, for the rare-earth nucleus 163Er. The quantal eigenstates are described with a shell model which combines a cranked Nilsson mean-field and a residual two-body interaction, together with a term which takes into account the angular momentum carried by the K-quantum number in an approximate way. K-mixing is produced by the interplay of the Coriolis interaction and the residual interaction; it is weak in the region of the discrete rotational bands (U \lesim 1MeV), but it gradually increases until the limit of complete violation of the K-quantum number is approached around U \sim 2 - 2.5 MeV. The calculated matrix elements between bands having different K-quantum numbers decrease exponentially as a function of ΔK\Delta K, in qualitative agreement with recent data.Comment: 29 pages, 7 figure

    A simple plating assay for aneuploidy in sexual progeny of Neurospora crassa, and a new allele of mei-1.

    Get PDF
    We developed a simple ascospore plating assay for aneuploidy, based on identifying disomic progeny that inherit two independently selectable mtr alleles. We validated the assay using a known meiotic mutant, mei-2. We used this assay to demonstrate that elevated frequencies of aneuploidy previously reported to be associated with reduced DNA methylation were not, in fact, due to the methylation deficiencies. A new allele of the mei-1 gene was responsible for some of the high aneuploidy

    Calcium-free Solid Solutions in the System Ba7F12Cl2−xBrx (x<1.5), a Single-component White Phosphor Host

    Get PDF
    We have recently prepared solid solutions of Ba∼6.3Ca∼0.7F12Cl2−xBrx with x ranging from 0 to 2. In this work, the synthesis and single crystal X-ray structure of calcium-free crystals of Ba∼6.9Na∼0.2F12Br0.6Cl1.4 (space group P63/m, a=10.6024(10), c=4.2034(4)Å), Ba∼6.9Na∼0.2F12Br1.4 Cl0.6 (space group P63/m, a=10.6155(9), c=4.2355(4)Å) and Ba∼6.9Na∼0.2Br1.32Cl0.68F12 (space group P63/m, a=10.6218(9), c=4.2284(4)Å) are reported. These crystals systematically present additional electron density at the 0 0 0.25 position which is associated with the presence of small, but significant amounts of Na+ ions in the crysta

    A common founding clone with TP53 and PTEN mutations gives rise to a concurrent germ cell tumor and acute megakaryoblastic leukemia

    Get PDF
    We report the findings from a patient who presented with a concurrent mediastinal germ cell tumor (GCT) and acute myeloid leukemia (AML). Bone marrow pathology was consistent with a diagnosis of acute megakaryoblastic leukemia (AML M7), and biopsy of an anterior mediastinal mass was consistent with a nonseminomatous GCT. Prior studies have described associations between hematological malignancies, including AML M7 and nonseminomatous GCTs, and it was recently suggested that a common founding clone initiated both cancers. We performed enhanced exome sequencing on the GCT and the AML M7 from our patient to define the clonal relationship between the two cancers. We found that both samples contained somatic mutations in PTEN (C136R missense) and TP53 (R213 frameshift). The mutations in PTEN and TP53 were present at ∼100% variant allele frequency (VAF) in both tumors. In addition, we detected and validated five other shared somatic mutations. The copy-number analysis of the AML exome data revealed an amplification of Chromosome 12p. We also identified a heterozygous germline variant in FANCA (S858R), which is known to be associated with Fanconi anemia but is of uncertain significance here. In summary, our data not only support a common founding clone for these cancers but also suggest that a specific set of distinct genomic alterations (in PTEN and TP53) underlies the rare association between GCT and AML. This association is likely linked to the treatment resistance and extremely poor outcome of these patients. We cannot resolve the clonal evolution of these tumors given limitations of our data

    Long range transport of ultra cold atoms in a far-detuned 1D optical lattice

    Full text link
    We present a novel method to transport ultra cold atoms in a focused optical lattice over macroscopic distances of many Rayleigh ranges. With this method ultra cold atoms were transported over 5 cm in 250 ms without significant atom loss or heating. By translating the interference pattern together with the beam geometry the trap parameters are maintained over the full transport range. Thus, the presented method is well suited for tightly focused optical lattices that have sufficient trap depth only close to the focus. Tight focusing is usually required for far-detuned optical traps or traps that require high laser intensity for other reasons. The transport time is short and thus compatible with the operation of an optical lattice clock in which atoms are probed in a well designed environment spatially separated from the preparation and detection region.Comment: 14 pages, 6 figure

    Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets

    Full text link
    In the corner-sharing lattice, magnetic frustration causes macroscopic degeneracy in the ground state, which prevents systems from ordering. However, if the ensemble of the degenerate configuration has some global structure, the system can have a symmetry breaking phenomenon and thus posses a finite temperature phase transition. As a typical example of such cases, the magnetic phase transition of the Ising-like Heisenberg antiferromagnetic model on the kagome lattice has been studied. There, a phase transition of the two-dimensional ferromagnetic Ising universality class occurs accompanying with the uniform spontaneous magnetization. Because of the macroscopic degeneracy in the ordered phase, the system is found to show an entropy-driven ordering process, which is quantitatively characterized by the number of ``weathervane loop''. We investigate this novel type of slow relaxation in regularly frustrated system.Comment: 4 pages, 6 figure

    Solutions to Maxwell's Equations using Spheroidal Coordinates

    Full text link
    Analytical solutions to the wave equation in spheroidal coordinates in the short wavelength limit are considered. The asymptotic solutions for the radial function are significantly simplified, allowing scalar spheroidal wave functions to be defined in a form which is directly reminiscent of the Laguerre-Gaussian solutions to the paraxial wave equation in optics. Expressions for the Cartesian derivatives of the scalar spheroidal wave functions are derived, leading to a new set of vector solutions to Maxwell's equations. The results are an ideal starting point for calculations of corrections to the paraxial approximation

    Representation of extreme precipitation events leading to opposite climate change signals over the Congo Basin

    No full text
    We investigate the reasons for the opposite climate change signals in precipitation between the regional climate model REMO and its driving earth system model MPI-ESM over the greater Congo region. Three REMO simulations following three RCP scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) are conducted, and it is found that the opposite signals, with REMO showing a decrease and MPI-ESM an increase in the future precipitation, diverge strongly as we move from a less extreme to a more extreme scenario. It has been shown that REMO simulates a much higher number of extreme rainfall events than MPI-ESM. This results in higher surface runoff and thus less soil infiltration, which leads to lower amounts of soil moisture in REMO. This further leads to less moisture recycling via evapotranspiration, which in turn results in less precipitation over the region. In the presence of a strong radiative forcing, the hydrological cycle becomes less intense in REMO and a downward trend in hydrological variables is observed. Contrary to this, the higher amounts of soil-moisture due to the lack of extreme rainfall events in MPI-ESM enhance the hydrological cycle. In the presence of strong radiative forcing, higher amounts of soil moisture result in increased evapotranspiration which in turn results in the higher amount of precipitation. It is concluded that the land-atmosphere coupling over the Congo region is very sensitive to the change in soil moisture amounts, which is likely to play a major role in global warming conditions. Therefore, adequate and improved representation of soil processes in climate models is essential to study the effects of climate change. However, the better representation of extreme rainfall events in REMO compared to MPI-ESM can be regarded as an added value of the model
    • …
    corecore