2,542 research outputs found
Preliminary estimates of environmental exposure for fuel and exhaust products, volume i. part i- methods and preliminary estimates for msfc. part 2- recommended experimental design for msfc
Environmental exposure for fuel and exhaust products with preliminary estimate
Multiresolution community detection for megascale networks by information-based replica correlations
We use a Potts model community detection algorithm to accurately and
quantitatively evaluate the hierarchical or multiresolution structure of a
graph. Our multiresolution algorithm calculates correlations among multiple
copies ("replicas") of the same graph over a range of resolutions. Significant
multiresolution structures are identified by strongly correlated replicas. The
average normalized mutual information, the variation of information, and other
measures in principle give a quantitative estimate of the "best" resolutions
and indicate the relative strength of the structures in the graph. Because the
method is based on information comparisons, it can in principle be used with
any community detection model that can examine multiple resolutions. Our
approach may be extended to other optimization problems. As a local measure,
our Potts model avoids the "resolution limit" that affects other popular
models. With this model, our community detection algorithm has an accuracy that
ranks among the best of currently available methods. Using it, we can examine
graphs over 40 million nodes and more than one billion edges. We further report
that the multiresolution variant of our algorithm can solve systems of at least
200000 nodes and 10 million edges on a single processor with exceptionally high
accuracy. For typical cases, we find a super-linear scaling, O(L^{1.3}) for
community detection and O(L^{1.3} log N) for the multiresolution algorithm
where L is the number of edges and N is the number of nodes in the system.Comment: 19 pages, 14 figures, published version with minor change
Photon number discrimination without a photon counter and its application to reconstructing non-Gaussian states
The non-linearity of a conditional photon-counting measurement can be used to
`de-Gaussify' a Gaussian state of light. Here we present and experimentally
demonstrate a technique for photon number resolution using only homodyne
detection. We then apply this technique to inform a conditional measurement;
unambiguously reconstructing the statistics of the non-Gaussian one and two
photon subtracted squeezed vacuum states. Although our photon number
measurement relies on ensemble averages and cannot be used to prepare
non-Gaussian states of light, its high efficiency, photon number resolving
capabilities, and compatibility with the telecommunications band make it
suitable for quantum information tasks relying on the outcomes of mean values.Comment: 4 pages, 3 figures. Theory section expanded in response to referee
comment
Fabrication and Characterisation of an Adaptable Plasmonic Nanorod Array for Solar Energy Conversion
The surface plasmonic modes of a side-by-side aligned gold nanorod array supported on a gold substrate has been characterised by electron energy loss spectroscopy (EELS). Plasmonic coupling within the array splits the nanorods' longitudinal mode into a bright mode (symmetrically aligned dipoles) and a dark mode (anti-symmetrically aligned dipoles). We support this observation by means of finite element modelling (FEM)
Response to comment on 'Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size'
We recently reported that molecular dynamics simulations for hemoglobin require a surprisingly large box size to stabilize the T(0) state relative to R(0), as observed in experiments (El Hage et al., 2018). Gapsys and de Groot have commented on this work but do not provide convincing evidence that the conclusions of El Hage et al., 2018 are incorrect. Here we respond to these concerns, argue that our original conclusions remain valid, and raise our own concerns about some of the results reported in the comment by Gapsys and de Groot that require clarification
Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size
Recent molecular dynamics (MD) simulations of human hemoglobin (Hb) give results in disagreement with experiment. Although it is known that the unliganded (T 0 ) and liganded (R 4 ) tetramers are stable in solution, the published MD simulations of T 0 undergo a rapid quaternary transition to an R-like structure. We show that T 0 is stable only when the periodic solvent box contains ten times more water molecules than the standard size for such simulations. The results suggest that such a large box is required for the hydrophobic effect, which stabilizes the T 0 tetramer, to be manifested. Even in the largest box, T 0 is not stable unless His146 is protonated, providing an atomistic validation of the Perutz model. The possibility that extra large boxes are required to obtain meaningful results will have to be considered in evaluating existing and future simulations of a wide range of systems
Knowledge and practices about family planning among women attending the Obstetrics Outpatient Department of a newly established tertiary care center
Background: Birth spacing and appropriate family planning is the milestone for long term good health of both the mother and the child and in turn the betterment of the whole society. Before starting the Family Planning clinic, we wanted to have a thorough understanding of the levels of awareness and acceptance of various family planning methods among the women attending the outpatient department of this tertiary care hospital. This preliminary data would be helpful in planning suitable programs which would be helpful in enhancing the family planning acceptance and modifying the existing steps of approach.Methods: A cross-sectional descriptive study was done in the department of Obstetrics and Gynecology of the tertiary care hospital. The study group included 200 women within the reproductive (18-45 years) age group.Results: 88% of the participants were aware of some or the other methods of contraception. According to the participants, the main source of information was health care workers, friends, family members (mother and sisters) and various social platforms and television. 37% of women were not using any method despite being aware of contraceptive methods. Maximum women (65) were following coitus interruptus as a natural method of contraception.16.5% of women were using barrier method of contraception. Unawareness about contraceptive methods was the major reason behind not using any method of contraception. Though knowledge about contraception was reported by 88% of the study population, only 63% of them were actually using some method of contraception.Conclusions: The study shows that there is a gap between the level of awareness about various family planning services and the actual practice of any method of contraception by the study population. So, the main aim of starting of the family planning clinic at our institute would be to bridge this gap
Squeezed-field injection for gravitational wave interferometers
In a recent table-top experiment, we demonstrated the compatibility of three advanced interferometer techniques for gravitational wave detection, namely power-recycling, detuned signal recycling and squeezed-field injection. The interferometer's signal-to-noise ratio was improved by up to 2.8 dB beyond the coherent state's shot-noise. This value was mainly limited by optical losses on the squeezed field. We present a detailed analysis of the optical losses in our experiment and provide an estimation of the possible nonclassical performance of a future squeezed-field enhanced GEO 600 detector
Experimental characterization of frequency dependent squeezed light
We report on the demonstration of broadband squeezed laser beams that show a
frequency dependent orientation of the squeezing ellipse. Carrier frequency as
well as quadrature angle were stably locked to a reference laser beam at
1064nm. This frequency dependent squeezing was characterized in terms of noise
power spectra and contour plots of Wigner functions. The later were measured by
quantum state tomography. Our tomograph allowed a stable lock to a local
oscillator beam for arbitrary quadrature angles with one degree precision.
Frequency dependent orientations of the squeezing ellipse are necessary for
squeezed states of light to provide a broadband sensitivity improvement in
third generation gravitational wave interferometers. We consider the
application of our system to long baseline interferometers such as a future
squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure
- …