111 research outputs found

    The Portrayal of Women in Opera: An Analytical Study of the Music in Puccini\u27s Madama Butterfly

    Get PDF

    Detailed monitoring reveals the nature of submarine turbidity currents

    Get PDF
    Seafloor sediment flows, called turbidity currents, form the largest sediment accumulations, deepest canyons, and longest channels on Earth. It was once thought that turbidity currents were impractical to measure in action, especially due to their ability to damage sensors in their path, but direct monitoring since the mid 2010s has measured them in detail. In this Review, we summarise knowledge of turbidity currents gleaned from this direct monitoring. Monitoring identifies triggering mechanisms from dilute river-plumes, and shows how rapid sediment accumulation can precondition slope failure, but the final triggers can be delayed and subtle. Turbidity currents are consistently more frequent than predicted by past sequence stratigraphic models, including at sites >300 km from any coast. Faster (>~1.5 m s–1) flows are driven by a dense near-bed layer at their front, whereas slower flows are entirely dilute. This frontal layer sometimes erodes large (>2.5 km3) volumes of sediment, yet maintains a near-uniform speed, leading to a travelling wave model. Monitoring shows that flows sculpt canyons and channels through fast-moving knickpoints, and how deposits originate. Emerging technologies with reduced cost and risk can lead to widespread monitoring of turbidity currents, so their sediment and carbon fluxes can be compared with other major global transport processes

    Author Correction: Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (Nature Communications, (2020), 11, 1, (3129), 10.1038/s41467-020-16861-x)

    Get PDF
    © 2020, The Author(s). The original version of this Article contained an error in the labelling of the cross-section in Fig. 2g and the vertical axis in Fig. 2b. This has been corrected in both the PDF and HTML versions of the Article

    Diffuse laser illumination for Maxwellian view Doppler holography of the retina

    Full text link
    We describe the advantages of diffuse illumination in laser holography for ophthalmology. The presence of a diffusing element introduces an angular diversity of the optical radiation and reduces its spatial coherence, which spreads out the energy distribution of the illumination beam in the focal plane of the eyepiece. The field of view of digitally computed retinal images can easily be increased as the eyepiece can be moved closer to the cornea to obtain a Maxwellian view of the retina without compromising ocular safety. Compliance with American and European safety standards for ophthalmic devices is more easily obtained by preventing the presence of a laser hot spot observed in front of the cornea in the absence of a scattering element. Diffuse laser illumination does not introduce any adverse effects on digitally computed laser Doppler images.Comment: 9 page

    Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models:a mechanistic insight

    Get PDF
    International audienceCeramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies

    ADP Ribosylation Factor Like 2 (Arl2) Regulates Breast Tumor Aggressivity in Immunodeficient Mice

    Get PDF
    We have previously reported that ADP ribosylation factor like 2 (Arl2), a small GTPase, content influences microtubule dynamics and cell cycle distribution in breast tumor cells, as well as the degree and distribution of phosphorylated P53. Here we show, in two different human breast adenocarcinoma models, that Arl2 content has a major impact on breast tumor cell aggressivity both in vitro and in vivo. Cells with reduced content of Arl2 displayed reduced contact inhibition, increased clonogenic or cluster formation as well as a proliferative advantage over control cells in an in vitro competition assay. These cells also caused larger tumors in SCID mice, a phenotype which was mimicked by the in vivo administration of siRNA directed against Arl2. Cells with increased Arl2 content displayed reduced aggressivity, both in vitro and in vivo, with enhanced necrosis and were also found to contain increased PP2A phosphatase activity. A rt-PCR analysis of fresh human tumor breast samples suggested that low Arl2 expression was associated with larger tumor size and greater risk of lymph node involvement at diagnosis. These data underline the role of Arl2, a small GTPase, as an important regulator of breast tumor cell aggressivity, both in vitro and in vivo

    Global monitoring data shows grain size controls turbidity current structure

    Get PDF
    The first detailed measurements from active turbidity currents have been made in the last few years, at multiple sites worldwide. These data allow us to investigate the factors that control the structure of these flows. By analyzing the temporal evolution of the maximum velocity of turbidity currents at different sites, we aim to understand whether there are distinct types of flow, or if a continuum exists between end-members; and to investigate the physical controls on the different types of observed flow. Our results show that the evolution of the maximum velocity of turbidity currents falls between two end-members. Either the events show a rapid peak in velocity followed by an exponential decay or, flows continue at a plateau-like, near constant velocity. Our analysis suggests that rather than triggers or system input type, flow structure is primarily governed by the grain size of the sediment available for incorporation into the flow

    Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of predictive markers of response to treatment is a major objective in breast cancer. A major problem in clinical sampling is the variability of RNA templates, requiring accurate management of tumour material and subsequent analyses for future translation in clinical practice. Our aim was to establish the feasibility and reliability of high throughput RNA analysis in a prospective trial.</p> <p>Methods</p> <p>This study was conducted on RNA from initial biopsies, in a prospective trial of neoadjuvant chemotherapy in 327 patients with inoperable breast cancer. Four independent centres included patients and samples. Human U133 GeneChips plus 2.0 arrays for transcriptome analysis and quantitative RT-qPCR of 45 target genes and 6 reference genes were analysed on total RNA.</p> <p>Results</p> <p>Thirty seven samples were excluded because <it>i) </it>they contained less than 30% malignant cells, or <it>ii) </it>they provided RNA Integrity Number (RIN) of poor quality. Among the 290 remaining cases, taking into account strict quality control criteria initially defined to ensure good quality of sampling, 78% and 82% samples were eligible for transcriptome and RT-qPCR analyses, respectively. For RT-qPCR, efficiency was corrected by using standard curves for each gene and each plate. It was greater than 90% for all genes. Clustering analysis highlighted relevant breast cancer phenotypes for both techniques (ER+, PR+, HER2+, triple negative). Interestingly, clustering on trancriptome data also demonstrated a "centre effect", probably due to the sampling or extraction methods used in on of the centres. Conversely, the calibration of RT-qPCR analysis led to the centre effect withdrawing, allowing multicentre analysis of gene transcripts with high accuracy.</p> <p>Conclusions</p> <p>Our data showed that strict quality criteria for RNA integrity assessment and well calibrated and standardized RT-qPCR allows multicentre analysis of genes transcripts with high accuracy in the clinical context. More stringent criteria are needed for transcriptome analysis for clinical applications.</p
    • …
    corecore