
Global monitoring data shows grain size controls turbidity current structure  

 

D. Vendettuoli1-2, M. A. Clare1, E.J. Sumner2, M.J.B. Cartigny3, P.J. Talling3, J. Wood4, 

L.P. Bailey1-2, M. Azpiroz - Zabala5, C.K. Paull6, R. Gwiazda6, J.P. Xu7, C. Stacey8, D.G. 

Lintern8, S.M. Simmons9, E.L Pope3 and S. Hage10 

1National Oceanography Centre, University of Southampton, Waterfront campus, 

Southampton SO14 3ZH, UK 

2 School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, 

UK 

3 Department of Earth Sciences and Geography, Durham University, Durham DH1 3LE, UK 

4 Ocean Data Technologies, Inc., 31 School Street Hyannis, MA 02601 

5 Faculty of Civil Engineering and Geoscience, Delft University of Technology, 2628 CN 

Delft, The Netherlands 

6 Monterey Bay Aquarium Research Institute (MBARI), 7700 Sandholdt Rd, Moss Landing, 

CA 95039, USA 

7 Southern University of Science and Technology, Shenzhen, China 

8 Geological Survey of Canada, Institute of Ocean Science, Canada 

9 Energy and Environment Institute, University of Hull, Hull, HU6 7RX, U.K. 

10 Department of Geoscience, Calgary University, AB Canada 

Corresponding author: Daniela Vendettuoli (d.vendettuoli@soton.ac.uk)  

Key Points: 

 Turbidity currents have two end-member structures that depend mainly on grain size.  

 Short-lived sandy flows last for minutes to hours and velocity decays exponentially 

over time.  

 Muddy flows can be far more prolonged and develop near-constant velocity for days. 
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Abstract 

The first detailed measurements from active turbidity currents have been made in the last few 

years, at multiple sites worldwide. These data allow us to investigate the factors that control 

the structure of these flows. By analyzing the temporal evolution of the maximum velocity of 

turbidity currents at different sites, we (1) aim to understand whether there are distinct types of 

flow, or if a continuum exists between end members; and (2) to investigate the physical controls 

on the different types of observed flow. Our results show that the evolution of the maximum 

velocity of turbidity currents falls between two end-members. Either the events show a rapid 

peak in velocity followed by an exponential decay or, flows continue at a plateau-like, near 

constant velocity. Our analysis suggests that rather than triggers or system input type, flow 

structure is primarily governed by the grain size of the sediment that is available for 

incorporation into the flow. 

Plain language summary 

Turbidity currents are sediments avalanches happening underwater that are highly 

unpredictable because controlled by many different physical factors. In the last few years, these 

flows have been monitored in action because scientists are aiming to collect as many 

information as possible to understand their behavior. One of the latest methodology is the 

employment of Acoustic Doppler Current Profilers (ADCPs) which are specific equipment 

moored along the continental shelf and suspended to a specific high from the seafloor. Typical 

parameters that can be extracted using ADCPs are, for instance, the velocity of the water and 

its density. In particular, in our research we studied (1) how the maximum velocity of several 

turbidity currents detected at different locations worldwide evolve through time; and (2) 

compared the different physiographic systems to understand whether similarities exist between 

turbidity currents. We understand that the main factor controlling turbidity currents behavior 

is the grain size of the sediments transported down-system, independently from the 

physiography of the systems where these events have been detected or the factors that might 

have trigger them. 
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1 Introduction 

Until recently, few direct measurements existed for powerful sediment avalanches on the 

seafloor, known as turbidity currents. It is important to understand these flows, as they play a 

key role in sediment and nutrient transfer to the deep sea, thereby affecting global geochemical 

cycling (Schlunz et al., 2000; Talling, 2014; Rabouille et al., 2017). Turbidity currents are 

challenging to measure because they occur on the seafloor, are destructive, often highly 

unpredictable (Inman et al., 1976; Talling et al., 2013; Xu et al., 2010; Paull et al., 2018) and 

pose a hazard to critical seafloor infrastructure (Carter et al., 2014). Despite these challenges, 

the last decade has seen a growth in the seafloor monitoring of turbidity currents (Clare et al., 

2020 and references therein); providing the first detailed insights into the structure of these 

flows. These monitoring studies have led to several new models for turbidity current dynamics 

(e.g. Azpiroz-Zabala et al., 2017; Symons et al., 2017; Heerema et al., 2020), that test aspects 

of previous influential models (e.g. Bagnold, 1962; Middleton, 1966; Parker et al., 1986; 

Cantero et al., 2012). 

Previous flow monitoring studies have typically focused on data-sets from individual canyons, 

and have focused on the characteristics of site-specific flows (e.g. Talling et al., 2013, Clare et 

al., 2020 and references therein). However, there is now flow monitoring data from different 

sites worldwide, which allows consideration of general questions about the dynamics of 

turbidity currents. For example, why do some flows maintain a fixed velocity for several days, 

while other flows rapidly accelerate but then dissipate within minutes to hours? What internal 

or external factors determine flow behavior? There are fundamental gaps in understanding of 

how the structure of turbidity currents varies, and the physical controls on that variability. 

Many classification systems exist for turbidity currents, based upon either their deposits or 

scaled-down laboratory experiments (e.g. Lowe, 1979b; Postma, 1986; Mulder and Cochonat, 

1996; Haughton et al., 2009; Talling et al., 2012). The nature of triggers and flow initiation has 

been suggested as a strong control on the structure of turbidity currents. For instance, Mulder 

et al. (2003) proposed that flows in muddy river-fed systems differ from that in more dilute 

river-fed settings or littoral drift-fed canyons. In such classifications, initiation through a rapid 

slope collapse may form a short-lived, unsteady surge, while sustained sediment input (such as 
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during sediment-laden river flood discharge to the ocean) may result in a prolonged, more 

steady flow (e.g. Middleton and Hampton, 1976; Kneller and Branney, 1995; Khripounoff et 

al., 2012). Others suggest that flow behavior relates to physiographic controls such as canyon 

or channel morphology (Xu et al., 2010), shelf gradient (Talling et al., 2007), or the grain size 

present in the system (e.g. Stow and Bowen, 1980; Lowe, 1982; Mutti et al., 2003). 

In the past, a lack of detailed monitoring data has limited the ability to test models using data 

from full-scale turbidity currents. Here, for the first time, we take advantage of detailed 

turbidity current monitoring data from recent studies worldwide to understand the physical 

controls on turbidity current structure. Specifically, the first aim is to document the variability 

in turbidity current structure, especially duration and temporal evolution of velocity. We 

analyse whether there are distinct types of flow, or if a continuum exists between end members. 

Second, we investigate the physical controls on the different types of observed flow structures, 

including system type, triggers, flow initiation and grain size. We compare turbidity currents 

in systems linked to muddy and sandy rivers, and systems fed by longshore drift. The range of 

systems varies from small fjord-head channels to large deep-sea submarine canyons. 

2. Data 

To assess the diversity in the structure of turbidity currents, we analyse high-resolution depth-

resolved velocity measurements of turbidity currents from seven sites worldwide. These sites 

span a wide range of environments, including bedload dominated fjord-head delta systems, 

river-fed deep-sea canyons, and littoral-fed deep-sea canyons. In all but one of the datasets, 

flow velocities were recorded using downward-looking Acoustic Doppler Current Profilers 

(ADCPs), at sites from 60 m to 2,300 m water depth. In one dataset (from offshore West 

Papua), a single-point current meter was used (see Table S1 and Table S2 in the supplementary 

material for full details of data acquisition). We now briefly introduce the different systems to 

provide context for later discussion (Figure S2). 

2.1 Bedload dominated fjord-head delta systems 

Howe Sound and Bute Inlet in British Columbia are relatively deep and steep-sided fjords, 

which host active submarine channels that are fed by one or more rivers at the fjord-heads 

(Gales et al., 2019). Squamish Prodelta is located at the mouth of the Squamish River in Howe 

Sound, where it connects to three submarine channels that reach water depths of c.200 m 

(Hughes Clarke, 2016). Here we analyse ADCP measurements, collected in 2015 (Hage et al., 
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2018), that recorded 300 m downstream of the delta-lip, at a water depth of 60 m. In Bute Inlet, 

Homathko and Southgate Rivers connect to a submarine channel that extends c.40 km to c.600 

m water depth (Prior et al., 1986). Turbidity currents were measured in 2016 using an ADCP 

located ~20 km downstream of the delta lip in 480 m water depth. Sediment cores in the axes 

of both channels generally recovered massive sands, although mud-caps are common in cores 

in Bute Inlet (Zeng et al., 1991; Vendettuoli et al., 2019; Hage et al., 2019; 2020). 

2.2 River-fed deep-sea submarine canyons 

The head of the Congo Canyon, located offshore Angola, is directly connected to the Congo 

river and located within the estuary (Savoye et al., 2009). Flows were recorded between 2009 

and 2010 by an ADCP deployed at 2,000 m water depth (Cooper et al., 2012; Azpiroz-Zabala 

et al., 2017). Deposits on the canyon floor consist of laminated sediments mainly composed of 

clay and silt, organic matter, with a minor component of sand (Dennielou et al., 2017; Azpiroz-

Zabala et al., 2017). The Var submarine canyon is located in the northwest Mediterranean Sea, 

at the outflow of the Var River (Khripounoff et al., 2009). Turbidity currents were recorded 

from 2005-2008 by an ADCP located at 1,200 m water depth (Khripounoff et al., 2009). 

Sediment traps from the same location recovered fine to very-fine sand (Khripounoff et al., 

2012). A sinuous submarine canyon extends from the Wanggar River delta in Cenderawasih 

Bay, West Papua, to c.1,600 m water depth. Near-bed velocity data were collected in 2012 

using an Aanderaa RCM-9 single-point current meter positioned 10.3 m above the seabed at a 

location 10 km outside of the channel lobe axis in 1520 m water depth (Wood, 2013). Sediment 

cores recovered a range of grain sizes including sand (within the main channel axis) but were 

dominated by mud and woody organic debris (Orange et al., 2010), particularly in the lobe 

fringes where the current meter was located. 

2.3 Oceanographically-fed submarine canyons 

Monterey Canyon offshore California is fed by long-shore drift, with negligible river input 

(Paull et al., 2005). While the canyon extends to 3,600 m water depth, we focus on turbidity 

currents recorded in the upper Monterey Canyon measured by an array of ADCPs deployed 

from 2016-2018 in water depths between 200 m and 1850 m (Paull et al., 2018; Heerema et al, 

2020). Core samples from the floor of Monterey Canyon dominantly comprise coarse sand and 

gravels (Paull et al., 2005; Maier et al., 2019). Hueneme Canyon, offshore Southern California, 

is also an efficient trap for sands transported by littoral drift, although, the Santa Clara River is 

also an important source of sediment input (Xu et al., 2010). Turbidity currents were recorded 
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by an ADCP located at 188 m water depth, where sediment traps mainly captured fine sand 

(Xu et al., 2010). 

3. Methodology 

We characterize the structure of each measured turbidity current using the temporal evolution 

of the maximum velocity and the total flow duration. We primarily use ADCP data in our 

analysis because the depth-resolved velocity measurements allow us to plot the maximum 

velocity despite the height of the velocity maximum changing through time. Raw ADCP data 

at Squamish Prodelta, Bute Inlet, Congo Canyon and Monterey Canyon permit such detailed 

velocity analysis. We also compare our results with measurements from published data that do 

not permit us to be as precise, as flow velocity was only reported at fixed heights within the 

water column (i.e. ADCP measurements in Var and Hueneme Canyons and fixed current meter 

in Cenderawasih Bay; Table S1), but still provide a valid comparison with different system 

types (see Figure S3 in the supplementary material).  

3.1 Ensuring consistent identification of the start and end of turbidity currents 

For each of the individual flow time series, we identified the starting point of turbidity currents. 

The start of a flow is straightforward to recognize, as it is the point in time that features a rapid 

increase in the downstream velocity. Defining the end of a turbidity current is more difficult. 

To be consistent among the datasets, we apply a cut off at the point where downstream flow 

velocity is less than the average background velocity, plus or minus one standard deviation. 

We define background velocity as the ambient range of velocities that precedes the start of 

each event (See Figure S2 and supplementary material for details). 

3.2 Standardizing the sampling frequency of velocity measurements  

The temporal resolution of the data varies among the different sites depending on the 

configuration of the monitoring instruments (i.e. from every 1 second at Squamish Prodelta to 

every 30 minutes in Var Canyon; Table S2). In order to standardize the datasets, we sub-

sampled the velocity of all of the events detected at each location relative to flow duration such 

that all datasets have 50 measurements regularly-spaced over the total duration of each flow 

(Figure 1 & S2).  
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Figure 1: maximum velocity and time plotted for the different turbidity currents events detected at the different 

sites worldwide with the indication of the grainsize transported down-slope (refer to Table 1 & 2 for the 

reference on the study of each site) 
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This methodology, means that the velocity-time plots of flows that were initially sampled with 

a higher resolution will be artificially smoothed. Our intention here, however, is to examine 

broad trends in velocity evolution over time. Therefore, it is important to ensure we provide a 

consistent comparison among all of the individual flows and across the different settings. 

3.3 Normalized time-velocity plots 

In order to compare trends in the temporal evolution of flow velocity, we plot normalized time-

velocity graphs. In these plots, the velocity of each individual event is normalized relative to 

its peak velocity, with time normalized to total flow duration (Figure 2 – Panel A). 

3.4 Calculation of bed shear stress 

To investigate the role of grainsize on the structure of the turbidity currents, we estimate the 

bed shear stress (Figure 3b) using:  

U*=Umax K [ln (hmax/(0.1 D90))]
-1 

Where, Umax is the maximum flow velocity (m/s), K is the Van Karman constant of 0.4, hmax is 

the height of the maximum velocity (m), and D90 is the ninetieth percentile of the grain size 

distribution in microns.  

4 Results 

4.1 Two end-members in turbidity current structure  

Our results show that the velocity evolution of all of the turbidity currents monitored at the 

different locations fall between two end-members (Figure 2a).  
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Figure 2: A) Normalized time-velocity plots for all of the turbidity currents events occurring at different 

locations worldwide; B) Normalized time-velocity graph that simplifies the above insert A. Numbers within 

the plot indicate the value of the maximum velocity detected from the ADCPs along the different portions of 

the flows; C) Schematic layout of the main end-member turbidity currents as defined in this study; D) core logs 

sampled at the different physiographic systems. See Table 3 of the supplementary material for the detailed 

description of such core logs and the reference to their study. 
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The first end-member is characterized by flows that feature a rapid, near instantaneous, peak 

in velocity followed by an exponential decay. These events last from 42 minutes to 20 hours, 

and their peak velocity varies from 0.25 m/s to 5 m/s. The second end-member is represented 

by turbidity currents that initially show a similar trend (i.e. an increase in velocity followed by 

an exponential decrease that lasts up to 30% of the total flow duration). However, instead of 

continuing the exponential decay, these flows display a plateau of near-constant velocity 

(Figure 2b). Durations for this second type of flow are markedly longer, lasting for ~8 days 

(from 6 minimum to 10 days as maximum), with constant plateau velocities lasting for ~110 

hours (from a minimum of 70 hours to a maximum of 150 hours). The peak velocities it is 

~2.25 m/s (minimum of 1.5 m/s to a maximum of 3 m/s), reducing to ~0.75 m/s (from a 

minimum of 0.5 m/s to a maximum of 1 m/s) in the plateau-like part of the flow. The near-

constant velocity plateaus are characterized by bed shear stresses in the range of ~0.012 m/s 

(from a minimum of 0.008 to a maximum of 0.016 m/s). 

4.2 Spectrum of flow behavior between the two end-member types 

Normalized time-velocity plots (Figure 2a) suggest that there is a continuous spectrum of 

behavior between these two end members. Short-lived (minutes to hours) turbidity currents, 

which occur in sandy systems (e.g. Squamish Prodelta, Monterey Canyon), have behavior that 

is closest to the first end-member (i.e. rapid increase, followed by swift exponential decay in 

velocity). Longer duration (days to weeks) turbidity currents in mud-rich systems (e.g. Congo 

Canyon) show a plateau-like, more stable velocity in their latter stages that characterizes the 

second end member. Flows that show intermediate behavior between these two end-members 

come from sites with mixed grain sizes (e.g. Cenderawasih Bay, Bute Inlet). Such events 

feature a rapid increase of the maximum velocity followed by an exponential decay that lasts 

for about 30% of the entire flow duration. Once the velocity reaches 2/3 of its maximum, the 

decay then precedes with a downward concave trend until it reaches its minimum and plateaus 

to zero. The duration of such flows varies from 27 minutes to up to 2 days and the maximum 

velocity ranges from 0.18 m/s to 1 m/s.  

5 Discussion 

Here we discuss why two end-members in turbidity current structure exist, and which physical 

processes determine where a particular flow lies on the spectrum between end-members. 
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5.2 Flow structure is independent of triggering mechanisms and system physiography 

Turbidity current structure has previously been attributed to several factors, such as the 

physiography of the system (Xu et al., 2010; Talling et al., 2007; Stow and Bowen, 1980; Lowe, 

1982), or the mechanism that triggered and initiated the flow (Middleton and Hampton, 1976; 

Kneller and Branney, 1995; Khripounoff et al., 2012). We find that flows from different sites 

can show a very similar behavior, despite marked differences in how flows were triggered or 

initiated, and in the nature of sediment supply to the system. For instance, once normalized, 

the flow structure in littoral drift-fed systems (i.e. Monterey and Hueneme Canyons, offshore 

California) is similar to river-fed systems (i.e. Squamish Prodelta and Var Canyon; Figure 2b), 

conforming closely to the first end member scenario (rapid increase in velocity followed by 

exponential decay). Similar turbidity current structures were formed in the Squamish Prodelta, 

which were initiated by both delta-lip collapses or settling from a surface (homopycnal) plume 

(Hizzett et al., 2018; Hage et al., 2019), and flows in the Var Canyon caused by plunging 

(hyperpycnal) sediment-laden river floodwater (Khripounoff et al., 2012). The velocity-

structure of these various turbidity currents were also comparable to flows measured in 

Monterey and Hueneme Canyons, caused by storm wave resuspension and slope failures 

preconditioned by rapid sediment accumulation (Xu et al., 2010; Paull et al., 2018). Therefore, 

a wide range of triggers, flow initiation and physiographic systems can lead to very similar 

flow structure. 

Within a single physiographic system, however, multiple flow structures are possible. For 

example, flows in Congo Canyon are bimodal (Simmons et al., 2020); as some flows are fast 

with long durations, whereas others are slow with short durations. However, flows from the 

same source area can also evolve in different ways, depending on their erosional capability and 

the grainsizes available on the canyon floor (Hage et al., 2019; Heerema et al., 2020), or there 

may be differences in distance to the source of these flows (Simmons et al., 2020). 

5.3. Does grain size control velocity-time profiles and if so why? 

Rather than triggers or system input type, our results (Figure 2C) suggests that flow structure 

is primarily governed by the grain size of the sediment that is available for incorporation into 

the flow. Sand-dominated systems (e.g. Squamish Prodelta, Monterey, Hueneme, and Var 

Canyons; Figure 2D) exhibit behavior closest to the first end-member. They feature short-

duration (minutes to hours) flows, and often show the highest peak velocities (up to 6 m/s) 

(Figure 1 Panel 1). As sand settles out of suspension more quickly than mud, these sandy flows 
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decelerate more rapidly, which in turn drives further loss of sediment – resulting in an 

exponential decay in flow velocity. Mud-dominated systems (e.g. Congo Canyon; Figure 2D) 

occur at the opposite end of the spectrum. These flows generally have slower velocities that 

can be sustained for several hours to days (Figure 3A). 
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Figure 3: A) comparison between flow duration for some of the events analyzed in this study. B) Cumulative 

bed shear stress of turbidity currents. In this graph, each block represents the sum of the bed shear stress 

estimated once each flow is more likely to deposit (plateau-like area). Vertical segments indicate the 

standard deviation error. For sites such as Squamish Delta, the value of the standard error is missing because 

the date used herein are relative just to a single flow. Horizontal lines account for the settling velocity 

threshold relative to silt, fine and medium sand. Refer to the main test for the specification of the values 

herein considered. 
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Muddy sediment is much easier to keep in suspension, and hence slow near-uniform velocities 

could suspend mud leading to the long duration (Azpiroz-Zabala et al., 2017). The initial peak 

in velocity is likely to be due to a concentration of sediment in the frontal part of the flow, 

which is dominantly composed of sand (Simmons et al., 2020). We propose that flow behavior 

that falls between the two end-members (e.g. Bute Inlet, Cenderawasih Bay; Figure 2D) relates 

to the ratio of mud and sand within the flow.  

We now consider whether the absence of a velocity plateau is caused by the lack of mud (silt 

and clay-sized fraction) within the flow. If the bed shear stresses fall below the settling velocity 

of mud (0.005 m/s) (Figure 3B), then this flow would not be capable of suspending mud. 

Conversely, if the bed shear stresses are higher than the settling velocity of mud, then it is likely 

that any mud within the flow would be suspended. The calculated bed shear stress of sand-rich 

turbidity currents (Figure 3B) falls between a minimum of 0.008 m/s (Bute Inlet) and a 

maximum of 0.018 m/s (Monterey Canyon). In Congo Canyon, mud-rich flows feature bed 

shear stresses ranging from 0.012 m/s to 0.014 m/s. 

The above analysis demonstrates that the absence of a velocity plateau in some flows is not 

because they cannot carry fine-grained sediment, rather they do not contain sufficient fine-

grained sediment to sustain the plateau (Figure 3B). This analysis also suggests that the 

duration of the velocity plateau relates to the amount of mud in the flow. In fact, the relative 

durations of the initial velocity peak and the subsequent velocity plateau, may provide a 

crude proxy for the ratio of sand to mud in a flow. As a result, flow structure may vary within 

individual systems (e.g. Simmons et al., 2020). 

5.3. Conclusions  

This analysis of turbidity current structure at different sites worldwide, focusing on the 

temporal evolution of the maximum velocity, shows that flow structure is mainly a function of 

the grain sizes transported. Knowing the grain size of the sediments within a specific 

physiographic system thus enables an inference of likely flow structure. This is valuable to 

studies that focus on geohazards, as the initial dense, sandy portion of the flow will have a 

different impact to the more sustained plateau. Our findings also have implications for the 

transport and burial of particles such as organic carbon and pollutants (including microplastics), 

as they are transported according to their grain size (e.g. Galy et al., 2007; Hage et al., 2020; 

Pohl et al., 2020; Kane et al., 2020). 
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