2,308 research outputs found

    Robust Structured Low-Rank Approximation on the Grassmannian

    Full text link
    Over the past years Robust PCA has been established as a standard tool for reliable low-rank approximation of matrices in the presence of outliers. Recently, the Robust PCA approach via nuclear norm minimization has been extended to matrices with linear structures which appear in applications such as system identification and data series analysis. At the same time it has been shown how to control the rank of a structured approximation via matrix factorization approaches. The drawbacks of these methods either lie in the lack of robustness against outliers or in their static nature of repeated batch-processing. We present a Robust Structured Low-Rank Approximation method on the Grassmannian that on the one hand allows for fast re-initialization in an online setting due to subspace identification with manifolds, and that is robust against outliers due to a smooth approximation of the ℓp\ell_p-norm cost function on the other hand. The method is evaluated in online time series forecasting tasks on simulated and real-world data

    Studi Anatomi Lambung Kelelawar Buah (Pteropus Vampyrus) dengan Pewarnaan Histokimia Periodic Acid Shiff (PAS)

    Full text link
    Timor Island, East Nusa Tenggara (NTT) has a large enough population of bats. A fruit bat (Pteropus vampyrus) is one of such species. Gastric in mammals consist of three region that is fundus, cardia and pylorus. This study aims to determine whether there are differences in the distribution pattern of constituent cells of gastric in Pteropus vampyrus to other mammals. Pteropus vampyrus is anaesthetized with ketamine 20 mg/kg and xylazine 2 mg/kg intramuscularly. In the anesthetized state, the perfusion of the heart is done by opening the chest cavity. Further observation is to the gastric in macroanatomy and then gastric organs were fixed by 10% formalin and then stain with histochemical staining (PAS). Region of Fundus of the stomach area occupies most of the region compared to the cardia and pylorus. Cardia and pyloric region are dominated by the parietal cells and mucous neck cells on the surface, but the pyloric region has begun to form gastric pits. Fundus region is dominated by the constituent cells such as gastric chief cells and parietal cells. Based on the results of the study, it is concluded that the distribution pattern in Pteropus vampyrus chief cells, parietal and mucous neck cells are different from other mammals

    Morphine Enhances HIV-1SF162-Mediated Neuron Death and Delays Recovery of Injured Neurites

    Get PDF
    HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup) was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through ”-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10–500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3ÎČ was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting unique interactions with virions or other viral or cellular proteins released by infected and/or activated cells

    Wigner's DD-matrix elements for SU(3)SU(3) - A Generating Function Approach

    Get PDF
    A generating function for the Wigner's DD-matrix elements of SU(3)SU(3) is derived. From this an explicit expression for the individual matrix elements is obtained in a closed form.Comment: RevTex 3.0, 22 pages, no figure

    Boson expansion methods applied to a two-level model in the study of multiple giant resonances

    Get PDF
    We apply boson expansion methods to an extended Lipkin-Meshkov-Glick model including anharmonicities in analogy with previous microscopic calculations. We study the effects of different approximations present in these calculations, among which the truncation of the hamiltonian and of the space, in connection with the study of the properties of two-phonon and three-phonon states. By comparing the approximate results on the spectrum with the exact ones we conclude that the approximations made in the microscopic calculations on two-phonon states are well justified. We find also that a good agreement with the exact results for the three-phonon state is obtained by using a bosonic hamiltonian truncated at the fourth order. This result makes us confident that such approximation can be used in realistic calculations, thus allowing a theoretical study of triple excitations of giant resonances.Comment: 12 pages, 2 figures, Latex with epsfig.st

    Influence of cracks on the soil-atmosphere interaction: numerical coupled model of thermo- atmosphereporous media

    Get PDF
    Soil shrinks as it desiccates, and the magnitude of shrinkage can be large for clayey soils. The drying of soil leads to cracks formation, causing high suctions to develop within. Cracks expose the deep soil and more evaporation can be expected in dry periods. To illustrate the effect of cracking, a numerical model of soil-atmosphere interaction has been developed taking into account the thermo-fluid coupling of an unsaturated clay soil. The model is used to simulate the evolution of evaporation during the drying process. The main results show a significant influence of the presence of cracks on the evaporation. This study also offers a simple method for taking into account the presence of cracks in the soil-atmosphere exchange

    Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes

    Full text link
    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of stars older than the Sun seems to not evolve much with age. Furthermore, the comparison of the photospheric, Sph, with the well-established chromospheric, S index, indicates that the Sph index can be used to provide a suitable magnetic activity proxy which can be easily estimated for a large number of stars from space photometric observations.Comment: Accepted for publication in A&

    Single-atom vibrational spectroscopy in the scanning transmission electron microscope

    Get PDF
    Vibrational spectroscopy can achieve high energy resolution, but spatial resolution of unperturbed vibrations is more difficult to realize. Hage et al. show that a single-atom impurity in a solid (a silicon atom in graphene) can give rise to distinctive localized vibrational signatures. They used high-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope to detect this signal. An experimental geometry was chosen that reduced the relative elastic scattering contribution, and repeated scanning near the silicon impurity enhanced the signal. The experimental vibration frequencies are in agreement with ab initio calculations.Science, this issue p. 1124Single-atom impurities and other atomic-scale defects can notably alter the local vibrational responses of solids and, ultimately, their macroscopic properties. Using high-resolution electron energy-loss spectroscopy in the electron microscope, we show that a single substitutional silicon impurity in graphene induces a characteristic, localized modification of the vibrational response. Extensive ab initio calculations reveal that the measured spectroscopic signature arises from defect-induced pseudo-localized phonon modestextemdashthat is, resonant states resulting from the hybridization of the defect modes and the bulk continuumtextemdashwith energies that can be directly matched to the experiments. This finding realizes the promise of vibrational spectroscopy in the electron microscope with single-atom sensitivity and has broad implications across the fields of physics, chemistry, and materials science

    Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization

    Get PDF
    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation
    • 

    corecore