353 research outputs found

    Multiple copy distillation and purification of phase diffused squeezed states

    Full text link
    We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.Comment: 11 pages, 13 figure

    Experimental characterization of Gaussian quantum communication channels

    Full text link
    We present a full experimental characterization of continuous variable quantum communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states and the logarithmic negativity and the purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.Comment: 9 pages, 4 figures, submitted to Physical Review

    Observation of squeezed light with 10dB quantum noise reduction

    Full text link
    Squeezing of light's quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a non-classical manifestation of light with great potential in high-precision quantum measurements, for example in the detection of gravitational waves. Equally promising applications have been proposed in quantum communication. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light's quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.Comment: 10 pages, 4 figure

    Arterial Occlusion and Acute Deep Vein Thrombosis-Induced Acute Limb Ischemia in a COVID-19 Patient

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a viral illness known to elicit a hypercoagulable state leading to a myriad of vascular pathologies. Over the course of the COVID-19 pandemic, widespread insults to the venous system have been well documented, with an increasing number of arterial events being reported. Despite the rising incidence of both pathological manifestations, these events are rare, but when present, serve as significant life threats to the patient in question. We report and discuss a case of a 69-year-old female with no thromboembolic risk factors or systemic signs of illness who presented with signs and symptoms consistent with acute limb ischemia (ALI). The patient was ultimately found to have occlusion of multiple arterial and venous vessels. She tested positive for COVID-19 despite being otherwise asymptomatic from a viral syndrome standpoint. To our knowledge, there are no reports in the medical literature of ALI - in the setting of arterial occlusion and concomitant deep vein thrombosis (DVT) - as the sole clinical manifestation in an asymptomatic patient without thrombotic risk factors who was only incidentally found to be COVID-19-positive. This case underscores the atypical manifestations and deleterious effects associated with COVID-19 and the need to have a high index of suspicion for a multitude of pathologies when facing this viral illness

    High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials

    Get PDF
    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 – 200 meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (<3 eV). In this contribution, high-resolution EELS was used to investigate four materials commonly used in organic photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments – a Nion UltraSTEM 100 MC ‘HERMES’ and a FEI Titan3 60–300 Image-Corrected S/TEM – using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35 meV and 175 meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers–Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered

    Experimental characterization of frequency dependent squeezed light

    Full text link
    We report on the demonstration of broadband squeezed laser beams that show a frequency dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064nm. This frequency dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The later were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with one degree precision. Frequency dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third generation gravitational wave interferometers. We consider the application of our system to long baseline interferometers such as a future squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure

    SAW RFID devices using connected IDTs as an alternative to conventional reflectors for harsh environments

    Get PDF
    International audienceRemote interrogation of surface acoustic wave ID-tags imposes a high signal amplitude which is related to a high coupling coefficient value (K 2) and low propagation losses (α). In this paper, we propose and discuss an alternative configuration to the standard one. Here, we replaced the conventional configuration, i.e. one interdigital transducer (IDT) and several reflectors, by a series of electrically connected IDTs. The goal is to increase the amplitude of the detected signal using direct transmission between IDTs instead of the reflection from passive reflectors. This concept can therefore increase the interrogation scope of ID-tags made on conventional substrate with high K 2 value. Moreover, it can also be extended to suitable substrates for harsh environments such as high temperature environments: the materials used exhibit limited performances (low K 2 value and relatively high propagation losses) and are therefore rarely used for identification applications. The concept was first tested and validated using the lithium niobate 128°Y-X cut substrate, which is commonly used in ID-tags. A good agreement between experimental and numerical results was obtained for the promising concept of connected IDTs. The interesting features of the structure were also validated using a langasite substrate, which is well-known to operate at very high temperatures. Performances of both substrates (lithium niobate and langasite) were tested with an in-situ RF characterization up to 600°C. Unexpected results regarding the resilience of devices based on congruent lithium niobate were obtained. Index Terms-high temperature, lithium niobate, radio frequency identification (RFID), surface acoustic wave (SAW

    Preparation of distilled and purified continuous variable entangled states

    Full text link
    The distribution of entangled states of light over long distances is a major challenge in the field of quantum information. Optical losses, phase diffusion and mixing with thermal states lead to decoherence and destroy the non-classical states after some finite transmission-line length. Quantum repeater protocols, which combine quantum memory, entanglement distillation and entanglement swapping, were proposed to overcome this problem. Here we report on the experimental demonstration of entanglement distillation in the continuous-variable regime. Entangled states were first disturbed by random phase fluctuations and then distilled and purified using interference on beam splitters and homodyne detection. Measurements of covariance matrices clearly indicate a regained strength of entanglement and purity of the distilled states. In contrast to previous demonstrations of entanglement distillation in the complementary discrete-variable regime, our scheme achieved the actual preparation of the distilled states, which might therefore be used to improve the quality of downstream applications such as quantum teleportation

    Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A

    Get PDF
    International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A
    corecore