244 research outputs found

    Cognitive Behavioral Therapy Lowers Elevated Functional Connectivity in Depressed Adolescents

    Get PDF
    Imaging studies have implicated altered functional connectivity in adults with major depressive disorder (MDD). Whether similar dysfunction is present in adolescent patients is unclear. The degree of resting-state functional connectivity (rsFC) may reflect abnormalities within emotional (‘hot’) and cognitive control (‘cold’) neural systems. Here, we investigate rsFC of these systems in adolescent patients and changes following cognitive behavioral therapy (CBT). Functional Magnetic Resonance Imaging (fMRI) was acquired from adolescent patients before CBT, and 24-weeks later following completed therapy. Similar data were obtained from control participants. Cross-sectional Cohort: From 82 patients and 34 controls at baseline, rsFC of the amygdala, anterior cingulate cortex (ACC), and pre-frontal cortex (PFC) was calculated for comparison. Longitudinal Cohort: From 17 patients and 30 controls with longitudinal data, treatment effects were tested on rsFC. Patients demonstrated significantly greater rsFC to left amygdala, bilateral supragenual ACC, but not with PFC. Treatment effects were observed in right insula connected to left supragenual ACC, with baseline case-control differences reduced. rsFC changes were significantly correlated with changes in depression severity. Depressed adolescents exhibited heightened connectivity in regions of ‘hot’ emotional processing, known to be associated with depression, where treatment exposure exerted positive effects, without concomitant differences in areas of ‘cold’ cognition.The study was funded by the UK Medical Research Council (grant: G0802226), the National Institute for Health Research (NIHR) (grant: 06-05-01), financial support from the Department of Health, and the Behavioral and Clinical Neuroscience Institute (BCNI), University of Cambridge, the latter being jointly funded by the Medical Research Council and the Wellcome Trust. Additional support was received from the Cambridge Biomedical Research Centre. SC is supported by a Cambridge CONACyT scholarship from the University of Cambridge Overseas Trust and CONACyT

    Positive deviance control-case life history: a method to develop grounded hypotheses about successful long-term avoidance of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence rates for long-term injection drug users in some localities surpass 60% for HIV and 80% for HCV. We describe methods for developing grounded hypotheses about how some injectors avoid infection with either virus.</p> <p>Methods</p> <p>Subjects: 25 drug injectors who have injected drugs 8 – 15 years in New York City. 17 remain without antibody to either HIV or HCV; 3 are double-positives; and 5 are positive for HCV but not HIV. "Staying Safe" methodology compares serostatus groups using detailed biographical timelines and narratives; and information about how subjects maintain access to physical resources and social support; their strategies and tactics to remain safe; how they handle problems of addiction and demands by drug dealers and other drug users; and how their behaviors and strategies do or do not become socially-embedded practices. Grounded theory and life-history analysis techniques compare and contrast doubly-uninfected with those infected with both viruses or only with HCV.</p> <p>Results</p> <p>Themes and initial hypotheses emerging from analyses included two master hypotheses that, if confirmed, should help shape preventive interventions: 1) Staying uninfected is not simply a question of social structure or social position. It involves agency by drug injectors, including sustained hard work and adaptation to changing circumstances. 2) Multiple intentionalities contribute to remaining uninfected. These conscious goals include balancing one's need for drugs and one's income; developing ways to avoid drug withdrawal sickness; avoiding situations where other drug users importune you to share drugs; and avoiding HIV (and perhaps HCV) infection. Thus, focusing on a single goal in prevention might be sub-optimal.</p> <p>Other hypotheses specify mechanisms of enacting these intentionalities. One example is finding ways to avoid extreme social ostracism.</p> <p>Conclusion</p> <p>We have identified strategies and tactics that some doubly-uninfected IDUs have developed to stay safe. Staying Safe methodology develops grounded hypotheses. These can be tested through cohort studies of incidence and prevention trials of hypothesis-based programs to help drug injectors make their injection and sexual careers safer for themselves and others. This positive deviance control-case life history method might be used to study avoiding other infections like genital herpes among sex workers.</p

    Adolescent Major Depressive Disorder: Neuroimaging Evidence of Sex Difference during an Affective Go/No-Go Task

    Get PDF
    Compared to female major depressive disorder (MDD), male MDD often receives less attention. However, research is warranted since there are significant sex differences in the clinical presentation of MDD and a higher rate of suicide in depressed men. To the best of our knowledge, this is the first functional magnetic resonance imaging (fMRI) study with a large sample addressing putative sex differences in MDD during adolescence, a period when one of the most robust findings in psychiatric epidemiology emerges; that females are twice as likely to suffer from MDD than males. Twenty-four depressed and 10 healthy male adolescents, together with 82 depressed and 24 healthy female adolescents, aged 11–18  years, undertook an affective go/no-go task during fMRI acquisition. In response to sad relative to neutral distractors, significant sex differences (in the supramarginal gyrus) and group-by-sex interactions (in the supramarginal gyrus and the posterior cingulate cortex) were found. Furthermore, in contrast to the healthy male adolescents, depressed male adolescents showed decreased activation in the cerebellum with a significant group-by-age interaction in connectivity. Future research may consider altered developmental trajectories and the possible implications of sex-specific treatment and prevention strategies for MDD.The study was funded by the Medical Research Council (grant: G0802226). The IMPACT clinical trial was funded by the NHS Health Technology Assessment (HTA) Programme, Central Manchester and Manchester Children’s University Hospitals NHS Trust, and the Cambridge and Peterborough Mental Health Trust. Additional support was provided by the jointly funded Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre

    Diving of Great Shearwaters (Puffinus gravis) in Cold and Warm Water Regions of the South Atlantic Ocean

    Get PDF
    BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis), the largest member of this genus. This study reports the first high sampling rate (2 s) of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs) were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50%) dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C) water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C) water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving

    At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1

    Get PDF
    Background: Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/ Angelman syndromes and cancer. Methodology/Principal Findings: To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance: Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/‘‘Rian’’

    Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function

    Get PDF
    BACKGROUND: Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE: RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats

    A New Model for Raf Kinase Inhibitory Protein Induced Chemotherapeutic Resistance

    Get PDF
    Therapeutic resistance remains the most challenging aspect of treating cancer. Raf kinase inhibitory protein (RKIP) emerged as a molecule capable of sensitizing cancerous cells to radio- and chemotherapy. Moreover, this small evolutionary conserved molecule, endows significant resistance to cancer therapy when its expression is reduced or lost. RKIP has been shown to inhibit the Raf-MEK-ERK, NFκB, GRK and activate the GSK3β signaling pathways. Inhibition of Raf-MEK-ERK and NFκB remains the most prominent pathways implicated in the sensitization of cells to therapeutic drugs. Our purpose was to identify a possible link between RKIP-KEAP 1-NRF2 and drug resistance. To that end, RKIP-KEAP 1 association was tested in human colorectal cancer tissues using immunohistochemistry. RKIP miRNA silencing and its inducible overexpression were employed in HEK-293 immortalized cells, HT29 and HCT116 colon cancer cell lines to further investigate our aim. We show that RKIP enhanced Kelch-like ECH-associated protein1 (KEAP 1) stability in colorectal cancer tissues and HT29 CRC cell line. RKIP silencing in immortalized HEK-293 cells (termed HEK-499) correlated significantly with KEAP 1 protein degradation and subsequent NRF2 addiction in these cells. Moreover, RKIP depletion in HEK-499, compared to control cells, bestowed resistance to supra physiological levels of H2O2 and Cisplatin possibly by upregulating NF-E2-related nuclear factor 2 (NRF2) responsive genes. Similarly, we observed a direct correlation between the extent of apoptosis, after treatment with Adriamycin, and the expression levels of RKIP/KEAP 1 in HT29 but not in HCT116 CRC cells. Our data illuminate, for the first time, the NRF2-KEAP 1 pathway as a possible target for personalized therapeutic intervention in RKIP depleted cancers

    The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs

    Get PDF
    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs

    The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization

    Get PDF
    Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling
    corecore