6 research outputs found

    Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing(R)

    No full text
    International audienceMany protocols for gene-specific DNA methylation analysis are either labor intensive, not quantitative and/or limited to the measurement of the methylation status of only one or very few CpG positions. Pyrosequencing is a real-time sequencing technology that overcomes these limitations. After bisulfite modification of genomic DNA, a region of interest is amplified by PCR with one of the two primers being biotinylated. The PCR generated template is rendered single-stranded and a pyrosequencing primer is annealed to analyze quantitatively cytosine methylation. In comparative studies, pyrosequencing has been shown to be among the most accurate and reproducible technologies for locus-specific DNA methylation analyses and has become a widely used tool for the validation of DNA methylation changes identified in genome-wide studies as well as for locus-specific analyses with clinical impact such as methylation analysis of the MGMT promoter. Advantages of the Pyrosequencing technology are the ease of its implementation, the high quality and the quantitative nature of the results, and its ability to identify differentially methylated positions in close proximity

    Specific hypomethylated CpGs at the IGF2 locus act as an epigenetic biomarker for familial adenomatous polyposis colorectal cancer

    No full text
    International audienceAims: The identification of specific biomarkers for colorectal cancer is of primary importance for early diagnosis. The aim of this study was to evaluate if methylation changes at the IGF2/H19 locus could be predictive for individuals at high risk for developing sporadic or hereditary colorectal cancer. Materials & methods: Quantitative methylation analysis using pyrosequencing was performed on three differentially methylated regions (DMRs): IGF2 DMR0 and DMR2 and the H19 DMR in DNA samples from sporadic colorectal cancer (n = 26), familial adenomatous polyposis (n = 35) and hereditary nonpolyposis colorectal cancer (n = 19) patients. Results: We report in this article for the first time, that in sporadic colorectal cancer tumor DNA both the IGF2 DMR0 and DMR2 are hypomethylated, while the H19 DMR retains its monoallelic methylation pattern. In lymphocyte DNA, a striking hypomethylation of nine contiguous correlated CpGs was found in the IGF2 DMR2 but only in familial adenomatous polyposis patients. Conclusion: Methylation alterations at the IGF2 locus are more extensive than previously reported and DMR2 hypomethylation in lymphocyte DNA might be a specific epigenetic biomarker for familial adenomatous polyposis patients

    Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas

    No full text
    The O6-methylguanine-DNA methyltransferase gene (MGMT) is methylated in several cancers, including gliomas. However, the functional role of cysteine-phosphate-guanine (CpG) island (CGI) methylation in MGMT silencing is still controversial. The aim of this study was to investigate whether MGMT CGI methylation correlates inversely with RNA expression of MGMT in glioblastomas and to determine the CpG region whose methylation best reflects the level of expression. The methylation level of CpG sites that are potentially related to expression was investigated in 54 glioblastomas by pyrosequencing, a highly quantitative method, and analyzed with respect to their MGMT mRNA expression status. Three groups of patients were identified according to the methylation pattern of all 52 analyzed CpG sites. Overall, an 85% rate of concordance was observed between methylation and expression (p < 0.0001). When analyzing each CpG separately, six CpG sites were highly correlated with expression (p < 0.0001), and two CpG regions could be used as surrogate markers for RNA expression in 81.5% of the patients. This study indicates that there is good statistical agreement between MGMT methylation and expression, and that some CpG regions better reflect MGMT expression than do others. However, if transcriptional repression is the key mechanism in explaining the higher chemosensitivity of MGMT-methylated tumors, a substantial rate of discordance should lead clinicians to be cautious when deciding on a therapeutic strategy based on MGMT methylation status alone

    Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men

    No full text
    DNA methylation marks, a key modification of imprinting, are erased in primordial germ cells and sex specifically re-established during gametogenesis. Abnormal epigenetic programming has been proposed as a possible mechanism compromising male fertility. We analysed by pyrosequencing the DNA methylation status of 47 CpGs located in differentially methylated regions (DMRs), the DMR0 and DMR2 of the IGF2 gene and in the 3rd and 6th CTCF-binding sites of the H19 DMR in human sperm from men with normal semen and patients with teratozoospermia (T) and/or oligo-astheno-teratozoospermia (OAT). All normal semen samples presented the expected high global methylation level for all CpGs analysed. In the teratozoospermia group, 11 of 19 patients presented a loss of methylation at variable CpG positions either in the IGF2 DMR2 or in both the IGF2 DMR2 and the 6th CTCF of the H19 DMR. In the OAT group, 16 of 22 patients presented a severe loss of methylation of the 6th CTCF, closely correlated with sperm concentration. The methylation state of DMR0 and of the 3rd CTCF was never affected by the pathological status of sperm samples. This study demonstrates that epigenetic perturbations of the 6th CTCF site of the H19 DMR might be a relevant biomarker for quantitative defects of spermatogenesis in humans. Moreover, we defined a methylation threshold sustaining the classification of patients in two groups, unmethylated and methylated. Using this new classification of patients, the observed intrinsic imprinting defects of spermatozoa appear not to impair significantly the outcome of assisted reproductive technologies
    corecore