8 research outputs found

    Characterization of restricted immunogene HLA-A2.1 peptides within the framework of the colorectal cancers with microsatellite instability : development of new specific cellular immunotherapy approaches

    No full text
    L’immunothĂ©rapie reprĂ©sente une avancĂ©e majeure dans la prise en charge des patients atteints de cancer. L’utilisation thĂ©rapeutique rĂ©cente des anticorps anti-"checkpoints", qui renforcent la rĂ©ponse immunitaire cellulaire naturelle anti-tumorale, a relancĂ© l’intĂ©rĂȘt d’approches d’immunothĂ©rapie cellulaire spĂ©cifique dans les cancers. MalgrĂ© tout, l’identification d'antigĂšnes capables de stimuler efficacement des lymphocytes T (LT) anti-tumoraux reprĂ©sente un obstacle majeur au dĂ©veloppement de telles approches. Pour identifier de tels antigĂšnes, des cellules prĂ©sentatrices d’antigĂšne (CPA) artificielles (CPAA), capables d’exprimer, aprĂšs transduction gamma-rĂ©trovirale, des peptides directement codĂ©s ou des antigĂšnes entiers, dĂ©gradĂ©s par ces cellules, comme le feraient des CPA humaines, en peptides prĂ©sentĂ©s au sein de la molĂ©cule du CMH de classe I la plus frĂ©quente chez l'homme, HLA-A2.1, ont Ă©tĂ© dĂ©veloppĂ©es au laboratoire. Ces CPAA sont capables de stimuler efficacement des LT cytotoxiques (LTC) spĂ©cifiques contre des antigĂšnes tumoraux. Deux grandes approches d’identification des antigĂšnes tumoraux d’intĂ©rĂȘt thĂ©rapeutique, ont Ă©tĂ© utilisĂ©es. La premiĂšre est une approche directe d’identification des peptides basĂ©e sur l’élution des peptides HLA-A2.1-restreints prĂ©sentĂ©s par nos CPAA et leur analyse par spectromĂ©trie de masse. La seconde est une approche d’immunologie inverse basĂ©e sur des prĂ©dictions in silico d’épitopes HLA-A2.1-restreints reposant sur des donnĂ©es biochimiques des poches du CMH. Dans les deux approches, des tests fonctionnels d’activation de LTC spĂ©cifiques ont Ă©tĂ© effectuĂ©s avec nos CPAA. Dans la premiĂšre Ă©tude, nous avons utilisĂ© la spectromĂ©trie de masse en tandem couplĂ©e Ă  la chromatographie en phase liquide, qui a Ă©tĂ© jusqu'Ă  prĂ©sent la technologie permettant l'identification rapide de centaines de ligands du CMH dans diffĂ©rentes approches expĂ©rimentales. En partant de CPAA codant les peptides immunogĂšnes connus M1m, M1 ou FSP02, des LTC spĂ©cifiques de ces peptides ont Ă©tĂ© obtenus, et nous avons rĂ©ussi Ă  les caractĂ©riser par spectromĂ©trie de masse. En partant de CPAA codant les protĂ©ines entiĂšres desquelles ces peptides sont dĂ©rivĂ©s, des LTC spĂ©cifiques des peptides ont Ă©galement Ă©tĂ© obtenus mais nous n’avons pas rĂ©ussi Ă  les caractĂ©riser par spectromĂ©trie de masse. Des peptides trĂšs immunogĂšnes, capables de stimuler de fortes rĂ©ponses immunitaires cellulaires anti-tumorales, peuvent donc Ă©chapper Ă  une dĂ©tection par spectromĂ©trie de masse, rendant ainsi discutable l'utilisation de cette technique pour sĂ©lectionner des peptides d’intĂ©rĂȘt clinique. Dans la deuxiĂšme Ă©tude, nous sommes partis de peptides prĂ©dits. Nous avons pu monter des rĂ©ponses immunitaires spĂ©cifiques contre les nĂ©oĂ©pitopes FSP25 et FSP26 prĂ©dits in silico, dĂ©rivĂ©s de la protĂ©ine mutĂ©e CASP5 (-1) retrouvĂ©e chez 60% de patients atteints de cancer colorectal (CCR) Ă  instabilitĂ© microsatellitaire (IMS). La CASP5 est impliquĂ©e dans l’apoptose et nous avons montrĂ© que les patients atteints d’un CCR Ă  IMS prĂ©sentant cette mutation avaient un moins bon pronostic. Nous avons Ă©galement montrĂ© que chez des patients HLA-A2+ atteints d’un CCR Ă  IMS prĂ©sentant la mutation, des LTC pouvaient ĂȘtre obtenus contre les Ă©pitopes FSP25 et FSP26, capables de lyser spĂ©cifiquement la lignĂ©e cellulaire HLA-A2.1+ HCT116 dĂ©rivĂ©e d’un CCR Ă  IMS prĂ©sentant Ă©galement la mutation, faisant de la protĂ©ine mutĂ©e CASP5 (-1) une cible thĂ©rapeutique de choix chez ces patients. Dans ces deux Ă©tudes, nos CPAA constituaient un outil de choix pour le dĂ©veloppement d’approches d’immunothĂ©rapie spĂ©cifique personnalisĂ©e, soit cellulaire adoptive, pour dĂ©terminer quels antigĂšnes devraient ĂȘtre ciblĂ©s ou pour directement activer et amplifier in vitro des LT injectĂ©s in vivo, soit vaccinale, pour dĂ©terminer les antigĂšnes les plus immunogĂšnes Ă  inclure dans un vaccin efficace.Immunotherapy represents a major advance in cancer patient management. Recent use of anti-checkpoint antibodies, that reinforce the natural cellular anti-tumor immune response, has revived interest for specific cellular immunotherapy approaches in cancers. Nevertheless, the difficulty of identifying highly immunogenic tumor antigens capable of specifically stimulating efficient anti-tumor T lymphocytes (TLs) is a considerable barrier to the development of such approaches. In order to identify such antigens, artificial antigen presenting cells (AAPCs) expressing the most common HLA class I molecule, HLA-A2.1, were developed in the laboratory. After gammaretroviral transduction, these AAPCs also express a directly-encoded peptide of interest or a full-length antigen, degraded by these cells into peptides as human antigen presenting cells (APCs) do. These AAPCs are capable of efficiently stimulating specific cytotoxic T lymphocytes (CTLs) against tumor antigens. Two major approaches for the identification of tumor antigens of therapeutic interest have been used. The first one is a direct approach of identification of HLA-A2.1-restricted peptides based on the elution of HLA-A2.1-peptide complexes expressed by our AAPCs and their analysis by mass spectrometry. The second one is a reverse immunology approach based on in silico predictions of HLA-A2.1-restricted epitopes using available MHC pocket biochemical data. In both approaches, functional tests were performed in vitro with our AAPCs to test the immunogenicity of the studied peptides. In the first study, we used tandem mass spectrometry coupled with liquid chromatography, which has been until today the technology of choice for the rapid identification of hundreds of MHC ligands in different experimental approaches. Starting from AAPCs encoding known immunogenic M1m, M1 and FSP02 peptides, specific CTLs could be obtained against these peptides, and we were able to characterize them by mass spectrometry. Starting from AAPCs encoding full length antigens from which these peptides are derived, peptide-specific CTLs were also obtained, but we were unable to characterize them by mass spectrometry. Therefore, highly immunogenic peptides, capable of stimulating strong anti-tumor cellular immune responses, may not be detected by mass spectrometry, rendering questionable the use of this technique for selecting clinically relevant peptides. In the second study, we started from predicted peptides. We were able to mount specific immune responses against FSP25 and FSP26 in silico predicted neoepitopes, derived from the CASP5 (-1) mutated protein found in 60% of microsatellite instability (MSI) colorectal cancer (CCR) patients. CASP5 is involved in programmed cell death and we have shown that MSI CRC patients whose tumors harbored this CASP5 (-1) mutation had less good prognosis. We have also shown that in HLA-A2+ MSI CASP5 (-1)-mutated CRC patients, specific CTLs could be obtained against FSP25 and FSP26 epitopes, capable of specifically lysing HLA-A2+ MSI CRC cell line HCT116 also harboring this mutation. Therefore, the mutated caspase-5 protein might be a therapeutic target of major interest for personalized specific immunotherapy strategies in the context of MSI CASP5 (-1)-mutated CRCs. In both studies, our AAPCs were a tool of choice for the development of personalized specific immunotherapy strategies, either for cellular adoptive approaches, to determine which antigens should be targeted or to directly activate and amplify in vitro antigen of interest-specific TLs which would be transferred in vivo, or for vaccine approaches, to identify the most immunogenic antigens which should be included in an efficacious vaccin

    Caractérisation de peptides HLA-A2.1 restreints immunogÚnes dans le cadre des cancers colorectaux à instabilité microsatellitaire : développement de nouvelles approches d'immunothérapie cellulaire spécifique

    No full text
    Immunotherapy represents a major advance in cancer patient management. Recent use of anti-checkpoint antibodies, that reinforce the natural cellular anti-tumor immune response, has revived interest for specific cellular immunotherapy approaches in cancers. Nevertheless, the difficulty of identifying highly immunogenic tumor antigens capable of specifically stimulating efficient anti-tumor T lymphocytes (TLs) is a considerable barrier to the development of such approaches. In order to identify such antigens, artificial antigen presenting cells (AAPCs) expressing the most common HLA class I molecule, HLA-A2.1, were developed in the laboratory. After gammaretroviral transduction, these AAPCs also express a directly-encoded peptide of interest or a full-length antigen, degraded by these cells into peptides as human antigen presenting cells (APCs) do. These AAPCs are capable of efficiently stimulating specific cytotoxic T lymphocytes (CTLs) against tumor antigens. Two major approaches for the identification of tumor antigens of therapeutic interest have been used. The first one is a direct approach of identification of HLA-A2.1-restricted peptides based on the elution of HLA-A2.1-peptide complexes expressed by our AAPCs and their analysis by mass spectrometry. The second one is a reverse immunology approach based on in silico predictions of HLA-A2.1-restricted epitopes using available MHC pocket biochemical data. In both approaches, functional tests were performed in vitro with our AAPCs to test the immunogenicity of the studied peptides. In the first study, we used tandem mass spectrometry coupled with liquid chromatography, which has been until today the technology of choice for the rapid identification of hundreds of MHC ligands in different experimental approaches. Starting from AAPCs encoding known immunogenic M1m, M1 and FSP02 peptides, specific CTLs could be obtained against these peptides, and we were able to characterize them by mass spectrometry. Starting from AAPCs encoding full length antigens from which these peptides are derived, peptide-specific CTLs were also obtained, but we were unable to characterize them by mass spectrometry. Therefore, highly immunogenic peptides, capable of stimulating strong anti-tumor cellular immune responses, may not be detected by mass spectrometry, rendering questionable the use of this technique for selecting clinically relevant peptides. In the second study, we started from predicted peptides. We were able to mount specific immune responses against FSP25 and FSP26 in silico predicted neoepitopes, derived from the CASP5 (-1) mutated protein found in 60% of microsatellite instability (MSI) colorectal cancer (CCR) patients. CASP5 is involved in programmed cell death and we have shown that MSI CRC patients whose tumors harbored this CASP5 (-1) mutation had less good prognosis. We have also shown that in HLA-A2+ MSI CASP5 (-1)-mutated CRC patients, specific CTLs could be obtained against FSP25 and FSP26 epitopes, capable of specifically lysing HLA-A2+ MSI CRC cell line HCT116 also harboring this mutation. Therefore, the mutated caspase-5 protein might be a therapeutic target of major interest for personalized specific immunotherapy strategies in the context of MSI CASP5 (-1)-mutated CRCs. In both studies, our AAPCs were a tool of choice for the development of personalized specific immunotherapy strategies, either for cellular adoptive approaches, to determine which antigens should be targeted or to directly activate and amplify in vitro antigen of interest-specific TLs which would be transferred in vivo, or for vaccine approaches, to identify the most immunogenic antigens which should be included in an efficacious vaccineL’immunothĂ©rapie reprĂ©sente une avancĂ©e majeure dans la prise en charge des patients atteints de cancer. L’utilisation thĂ©rapeutique rĂ©cente des anticorps anti-"checkpoints", qui renforcent la rĂ©ponse immunitaire cellulaire naturelle anti-tumorale, a relancĂ© l’intĂ©rĂȘt d’approches d’immunothĂ©rapie cellulaire spĂ©cifique dans les cancers. MalgrĂ© tout, l’identification d'antigĂšnes capables de stimuler efficacement des lymphocytes T (LT) anti-tumoraux reprĂ©sente un obstacle majeur au dĂ©veloppement de telles approches. Pour identifier de tels antigĂšnes, des cellules prĂ©sentatrices d’antigĂšne (CPA) artificielles (CPAA), capables d’exprimer, aprĂšs transduction gamma-rĂ©trovirale, des peptides directement codĂ©s ou des antigĂšnes entiers, dĂ©gradĂ©s par ces cellules, comme le feraient des CPA humaines, en peptides prĂ©sentĂ©s au sein de la molĂ©cule du CMH de classe I la plus frĂ©quente chez l'homme, HLA-A2.1, ont Ă©tĂ© dĂ©veloppĂ©es au laboratoire. Ces CPAA sont capables de stimuler efficacement des LT cytotoxiques (LTC) spĂ©cifiques contre des antigĂšnes tumoraux. Deux grandes approches d’identification des antigĂšnes tumoraux d’intĂ©rĂȘt thĂ©rapeutique, ont Ă©tĂ© utilisĂ©es. La premiĂšre est une approche directe d’identification des peptides basĂ©e sur l’élution des peptides HLA-A2.1-restreints prĂ©sentĂ©s par nos CPAA et leur analyse par spectromĂ©trie de masse. La seconde est une approche d’immunologie inverse basĂ©e sur des prĂ©dictions in silico d’épitopes HLA-A2.1-restreints reposant sur des donnĂ©es biochimiques des poches du CMH. Dans les deux approches, des tests fonctionnels d’activation de LTC spĂ©cifiques ont Ă©tĂ© effectuĂ©s avec nos CPAA. Dans la premiĂšre Ă©tude, nous avons utilisĂ© la spectromĂ©trie de masse en tandem couplĂ©e Ă  la chromatographie en phase liquide, qui a Ă©tĂ© jusqu'Ă  prĂ©sent la technologie permettant l'identification rapide de centaines de ligands du CMH dans diffĂ©rentes approches expĂ©rimentales. En partant de CPAA codant les peptides immunogĂšnes connus M1m, M1 ou FSP02, des LTC spĂ©cifiques de ces peptides ont Ă©tĂ© obtenus, et nous avons rĂ©ussi Ă  les caractĂ©riser par spectromĂ©trie de masse. En partant de CPAA codant les protĂ©ines entiĂšres desquelles ces peptides sont dĂ©rivĂ©s, des LTC spĂ©cifiques des peptides ont Ă©galement Ă©tĂ© obtenus mais nous n’avons pas rĂ©ussi Ă  les caractĂ©riser par spectromĂ©trie de masse. Des peptides trĂšs immunogĂšnes, capables de stimuler de fortes rĂ©ponses immunitaires cellulaires anti-tumorales, peuvent donc Ă©chapper Ă  une dĂ©tection par spectromĂ©trie de masse, rendant ainsi discutable l'utilisation de cette technique pour sĂ©lectionner des peptides d’intĂ©rĂȘt clinique. Dans la deuxiĂšme Ă©tude, nous sommes partis de peptides prĂ©dits. Nous avons pu monter des rĂ©ponses immunitaires spĂ©cifiques contre les nĂ©oĂ©pitopes FSP25 et FSP26 prĂ©dits in silico, dĂ©rivĂ©s de la protĂ©ine mutĂ©e CASP5 (-1) retrouvĂ©e chez 60% de patients atteints de cancer colorectal (CCR) Ă  instabilitĂ© microsatellitaire (IMS). La CASP5 est impliquĂ©e dans l’apoptose et nous avons montrĂ© que les patients atteints d’un CCR Ă  IMS prĂ©sentant cette mutation avaient un moins bon pronostic. Nous avons Ă©galement montrĂ© que chez des patients HLA-A2+ atteints d’un CCR Ă  IMS prĂ©sentant la mutation, des LTC pouvaient ĂȘtre obtenus contre les Ă©pitopes FSP25 et FSP26, capables de lyser spĂ©cifiquement la lignĂ©e cellulaire HLA-A2.1+ HCT116 dĂ©rivĂ©e d’un CCR Ă  IMS prĂ©sentant Ă©galement la mutation, faisant de la protĂ©ine mutĂ©e CASP5 (-1) une cible thĂ©rapeutique de choix chez ces patients. Dans ces deux Ă©tudes, nos CPAA constituaient un outil de choix pour le dĂ©veloppement d’approches d’immunothĂ©rapie spĂ©cifique personnalisĂ©e, soit cellulaire adoptive, pour dĂ©terminer quels antigĂšnes devraient ĂȘtre ciblĂ©s ou pour directement activer et amplifier in vitro des LT injectĂ©s in vivo, soit vaccinale, pour dĂ©terminer les antigĂšnes les plus immunogĂšnes Ă  inclure dans un vaccin efficace

    Abstract 4947: HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis down-regulated by both deletion and epigenetic mechanisms

    No full text
    International audienceHACE1, located on chromosome 6q, encodes an E3 ubiquitin ligase and is downregulated in human tumors such as neuroblastomas and natural killer (NK) lymphomas. HACE1 has been shown to ubiquitylate Rac1, a protein involved in cell proliferation and G2/M cell cycle progression. The function of HACE1 and the factors involved in its transcriptional regulation are largely unknown in the context of B-cell lymphomas. We show here, by RT-qPCR, that HACE1 gene is constitutively expressed in Normal lymph nodes and in normal B-cells isolated from peripheral blood, contrasting with a strong downregulation of its expression in more than 70% (77/111) of diffuse large B-cell lymphoma (DLBCL) cases and in four tested B-Lymphoma cell lines. HACE1 gene copy number was assessed by quantitative multiplex PCR of short fluorescent fragments (QMPSF) and array for comparative genomic hybridization (aCGH) in 91 DLBCL cases. A HACE1 heterozygous deletion was observed in 38.1% and an homozygous deletion in 2.4% of cases. These deletions were associated with a significant gene expression decrease. The molecular epigenetic mechanisms underlying HACE1 downregulation were also investigated. Using pyrosequencing assays, as compared to normal B-cells, we observed an hypermethylation of HACE1 promoter CpG177 island in 60% (68/111) of DLBCL cases and in all tested B-Lymphoma cell lines. However, no significant correlation between promoter methylation status and gene expression level was demonstrated. Furthermore, RT-qPCR assays revealed that the demethylating agent 5â€Čazacytidine (5â€ČAZA) did not induce a HACE1 gene expression increase in the different cell lines. By contrast, the histone deacetylase inhibitors (HDACi) trichostatin A (TSA) and LBH589 strongly reactivated the expression of HACE1 in Ramos, Raji and RL cells in which the CpG 177 island was fully methylated. We next performed ChIP experiments to determine whether HACE1 locus chromatin was in an active or inactive conformation in Ramos cell line, the most sensitive cell line to TSA effect. We found that the chromatin of HACE1 gene promoter region was predominantly in the inactive conformation (methylated H3 histones). TSA treatment was able to reverse this pattern, switching the conformation of HACE1 promoter chromatin to an active one predominantly associated with acetylated H3 histones. The putative role of HACE1 in B-cell lymphomagenesis was further investigated using lentiviral transduction (shHACE1). We demonstrated in Ramos and Raji cells that a down-regulation of HACE1 expression was associated with a significant decrease of apoptosis level and cell cycle arrest in G2/M phase. To conclude, our experiments indicate that HACE1 can act as a haploinsufficient tumor suppressor gene in most B-cell lymphomas and be downregulated by deacetylation and methylation of its promoter region chromatin constituting a potential target for HDAC inhibitors. Citation Format: Abdelilah Bouzelfen, Marion Alcantara, Hafid Kora, Philippe Bertrand, Sylvain Mareschal, Elodie Bohers, Catherine Maingonnat, Philippe Ruminy, Sahil Adriouch, Gaetan Riou, Martin Figeac, Thierry Fest, Christian Bastard, HervĂ© Tilly, Jean-Baptiste Latouche, Fabrice Jardin. HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis down-regulated by both deletion and epigenetic mechanisms. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4947. doi:10.1158/1538-7445.AM2015-494

    Correlation between Density of CD8+ T-cell Infiltrate in Microsatellite Unstable Colorectal Cancers and Frameshift Mutations: A Rationale for Personalized Immunotherapy

    No full text
    International audienceColorectal cancers with microsatellite instability (MSI) represent 15% of all colorectal cancers, including Lynch syndrome as the most frequent hereditary form of this disease. Notably, MSI colorectal cancers have a higher density of tumor-infiltrating lymphocytes (TIL) than other colorectal cancers. This feature is thought to reflect the accumulation of frameshift mutations in sequences that are repeated within gene coding regions, thereby leading to the synthesis of neoantigens recognized by CD8(+) T cells. However, there has yet to be a clear link established between CD8(+) TIL density and frameshift mutations in colorectal cancer. In this study, we examined this link in 103 MSI colorectal cancers from two independent cohorts where frameshift mutations in 19 genes were analyzed and CD3(+), CD8(+), and FOXP3(+) TIL densities were quantitated. We found that CD8(+) TIL density correlated positively with the total number of frameshift mutations. TIL densities increased when frameshift mutations were present within the ASTE1, HNF1A, or TCF7L2 genes, increasing even further when at least one of these frameshift mutations was present in all tumor cells. Through in vitro assays using engineered antigen-presenting cells, we were able to stimulate peripheral cytotoxic T cells obtained from colorectal cancer patients with peptides derived from frameshift mutations found in their tumors. Taken together, our results highlight the importance of a CD8(+) T cell immune response against MSI colorectal cancer-specific neoantigens, establishing a preclinical rationale to target them as a personalized cellular immunotherapy strategy, an especially appealing goal for patients with Lynch syndrome
    corecore