2,228 research outputs found

    Cryptosporidiosis: From Prevention to Treatment, a Narrative Review

    Get PDF
    Cryptosporidiosis is a water- and food-borne zoonotic disease caused by the protozoon parasite of the genus Cryptosporidium. C. hominis and C. parvum are the main two species causing infections in humans and animals. The disease can be transmitted by the fecal–oral route as well as the respiratory route. The infective stage (sporulated oocysts) is resistant to different disinfectants including chlorine. Currently, no effective therapeutic drugs or vaccines are available to treat and control Cryptosporidium infection. To prevent cryptosporidiosis in humans and animals, we need to understand better how the disease is spread and transmitted, and how to interrupt its transmission cycle. This review focuses on understanding cryptosporidiosis, including its infective stage, pathogenesis, life cycle, genomics, epidemiology, previous outbreaks, source of the infection, transmission dynamics, host spectrum, risk factors and high-risk groups, the disease in animals and humans, diagnosis, treatment and control, and the prospect of an effective anti-Cryptosporidium vaccine. It also focuses on the role of the One Health approach in managing cryptosporidiosis at the animal–human–environmental interface. The summarized data in this review will help to tackle future Cryptosporidium infections in humans and animals and reduce the disease occurrence

    Effect of organic fertilizers combined with benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) on the cucumber powdery mildew and the yield production

    Get PDF
    Organic fertilizers such as compost, compost tea and seaweed extracts (Algean) combined with benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH)) showed significant effect on the powdery mildew-infected cucumber leaves with Sphaerotheca fuliginea. We have shown that spraying the infected cucumber leaves with the BTH (0.05 mM) combined with the organic fertilizers strongly decreased the disease severity of the cucumber powdery mildew fungus from 85.1% to 3.4% as compared to the control leaves which infected only with the pathogen. Furthermore, organic fertilizers combined with BTH increased significantly vegetative growth characters of cucumber (stem length, number of leaves /plant, leaf area /plant and chlorophyll content) especially at the earlier stage of growth as compared to the control plants (chemical fertilizer only). Also, most of the organic materials produced the highest cucumber early yield and fruit quality, but total yield was equal or less than the chemical fertilizers. Interestingly enough, that organic fertilizers combined with BTH elevated the ascorbic acid content (chemical quality of cucumber fruits) and decreased the nitrate content which very harmful as well as increased the fruit yields as compared to the control plants

    Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers’ production

    Get PDF
    Although antibiotics growth promoters (AGPs), including zinc-bacitracin (ZnB), can threaten human health due to developing antimicrobial resistance, as well as drug residue in animal and poultry products, ZnB is still widely used, particularly in developing countries, for the sustainability of poultry farming. The present investigation aims to assess the use of Saccharomyces cerevisiae and Lactobacillus acidophilus, with or without a prebiotic (mannooligosaccharide, MOS), as alternatives to ZnB. For this reason, 150 one-day-old chicks were grouped into six groups, designated negative control, LA, SC, ZnB, SA + MOS, and LA + MOS (5 replicates of 5 chicks for each group). Chicks kept in the control group were fed the basal diet. Chickens kept in LA and SC groups received L. acidophilus, S. cerevisiae at a 1 g/kg diet and 2 g/Kg, respectively. Chickens kept in ZnB received ZnB at 0.5 g/kg. Chicks kept in the SC + MOS and LA + MOS were fed a basal diet containing 2 g S. cerevisiae + 1 g MOS/kg or 1 g L. acidophilus + 1 g MOS /kg, respectively. The efficacy was assessed based on the growth performance, carcass traits, meat quality, nutrient digestibility, and blood biochemistry composition during the entire trial 1–36 days of age. Results showed that chicks kept in the SC group had greater BW than the control (p < 0.05). Chicks kept in the SC, LA, SC + MOS, and LA + MOS consumed less feed than the control and Zn-B groups (p < 0.05). Supplementation with S. cerevisiae resulted in a better (p < 0.05) feed conversion rate (FCR) than the control group. Supplementation with L. acidophilus + MOS significantly increased (p < 0.05) the relative liver weight compared to those supplemented with ZnB, S. cerevisiae, and L. acidophilus. In addition, supplementation with ZnB-induced spleen hypertrophy compared to S. cerevisiae and L. acidophilus-supplemented groups (p < 0.05). Plasma, meat, and liver cholesterol, as well as the cholesterol-to-lipid ratio of meat and liver, were significantly decreased (p < 0.05) in both SC and LA groups compared to the control group. Our research indicates that adding 2 g/kg of S. cerevisiae to broiler feed can effectively replace ZnB and enhance productive performance and economic profits, making it a viable and sustainable option for broiler farming

    Simple training tricks for mastering and taming bypass procedures in neurosurgery

    Get PDF
    Background: Neurosurgeons devoted to bypass neurosurgery or revascularization neurosurgery are becoming scarcer. From a practical point of view, 'bypass neurosurgeons' are anastomosis makers, vessels technicians, and time-racing repairers of vessel walls. This requires understanding the key features and hidden tricks of bypass surgery. The goal of this paper is to provide simple and inexpensive tricks for taming the art of bypass neurosurgery. Most of these tricks and materials described can be borrowed, donated, or purchased inexpensively. Methods: We performed a review of relevant training materials and recorded videos for training bypass procedures for 3 years between June 2014 and July 2017. In total, 1,300 training bypass procedures were performed, of which 200 procedures were chosen for this paper. Results : A training laboratory bypass procedures is required to enable a neurosurgeon to develop the necessary skills. The important skills for training bypass procedures gained through meticulous practice to be as reflexes are coordination, speed, agility, flexibility, and reaction time. Bypassing requires synchronization between the surgeon's gross movements, fine motoric skills, and mental strength. The suturing rhythm must be timed in a brain-body-hand fashion. Conclusion: Bypass-Training is a critical part of neurosurgical training and not for a selected few. Diligent and meticulous training can enable every neurosurgeon to tame the art of bypass neurosurgery. This requires understanding the key features and hidden tricks of bypass surgery, as well as uncountable hours of training. In bypass neurosurgery, quality and time goes hand in hand. © 2017 Surgical Neurology International | Published by Wolters Kluwer - Medknow.Peer reviewe
    • …
    corecore