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Abstract: Photo-physiological variability of in vivo chlorophyll 

fluorescence (CF) per unit of chlorophyll concentration (CC) is analyzed 

using a biophysical model to improve the accuracy of CC assessments. 

Field measurements of CF and photosystem II (PSII) photochemical yield 

(PY) with the Advanced Laser Fluorometer (ALF) in the Delaware and 

Chesapeake Bays are analyzed vs. high-performance liquid chromatography 

(HPLC) CC retrievals. It is shown that isolation from ambient light, PSII 

saturating excitation, optimized phytoplankton exposure to excitation, and 

phytoplankton dark adaptation may provide accurate in vivo CC 

fluorescence measurements (R
2
 = 0.90–0.95 vs. HPLC retrievals). For in 

situ or flow-through measurements that do not allow for dark adaptation, 

concurrent PY measurements can be used to adjust for CF non-

photochemical quenching (NPQ) and improve the accuracy of CC 

fluorescence assessments. Field evaluation has shown the NPQ-invariance 

of CF/PY and CF(PY
−1

-1) parameters and their high correlation with HPLC 

CC retrievals (R
2
 = 0.74–0.96), while the NPQ-affected CF measurements 

correlated poorly with CC (R
2
 = −0.22). 
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1. Introduction 

Chlorophyll a (Chl) is a photosynthetic pigment that plays a key role in photosynthesis [1]. 

All phytoplankton species, regardless of their specific group and taxonomic features, contain 

Chl in their photosynthetic apparatus. Chl concentration (CC) is broadly used as a useful 

index of phytoplankton biomass in laboratory research, oceanographic studies, and 

environmental surveys. In vivo measurements of Chl fluorescence (CF) are highly sensitive, 

fast and easy to conduct in a small sample volume at natural concentrations of the 

photosynthesizing microorganisms, including direct in situ measurements [2–6] and LIDAR 

remote sensing [7–10]. CF measurements can provide information about CC, phytoplankton 

community structure [11–16], physiological status, photosynthetic efficiency and productivity 

[17–28]. 

While CF is broadly used as a proxy of CC and phytoplankton biomass [19, 29–32], the 

accuracy of quantitative CC assessments is often compromised by high, up to an order of 

magnitude [33–36], variability in CF/CC ratio. The relationship between CF and CC depends 

on phytoplankton taxonomy, cell size, organization of photosynthetic apparatus and 

physiological status. Even frequent instrument calibrations cannot guarantee reliable and 

accurate CC fluorescence retrievals. CF photo-physiological regulation by light regime and 

nutrient availability is known to be one of the major factors affecting CF/CC variability (e.g 

[19, 35]. The appropriate choice of a measurement protocol may result in the CF/CC 

variability reduction. Some fluorometers [12, 17, 21, 22, 37, 38] provide measurements of 

physiological parameters that potentially can be used to adjust CF magnitudes affected by 

photo-physiological variability. 

In this article, we use a simplified biophysical model to illustrate the problems relevant to 

the CF photo-physiological regulation and provide some practical recommendations that may 
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help to improve the accuracy of CC assessment from in vivo CF measurements. The 

analytical results and measurement protocols are evaluated using field measurements in the 

Delaware and Chesapeake Bays.  The abbreviations and variables used in the article are listed 

in Table 1. 

Table 1. Abbreviations and Variables 

Abbreviation or 

variable 

Meaning 

Chl Chlorophyll 

CC Chl concentration, mg m−3 

CF or CF' Chl fluorescence measured in a dark- or light-adapted state of phytoplankton, respectively 

(subscripts “U” and “S” designate flow-though underway and sample measurements, 

respectively) 

CFY Chl fluorescence yield 

HPLC High-performance liquid chromatography 

PSII Photosystem II 

RCs Reaction centers 

PQ Photochemical quenching 

NPQ Non-photochemical quenching 

ALF Advanced Laser Fluorometer 

ST PSII single-turnover time scale, < 1 ms 

MT PSII multi-turnover time scale, > 1 ms 

f Fraction of the photochemically functional PSII reaction centers; 0< f <1 

A Fraction of open functional PSII reaction centers; 0< A <1 

kp Rate constant of PSII photochemistry 

kf Rate constant of PSII Chl fluorescence 

kd Rate constant of PSII constitutive heat dissipation 

kN Rate constant of NPQ heat dissipation 

Φp or Φp' PSII photochemical yield in a dark- or light-adapted state of phytoplankton, respectively 

Φp
m or Φp

m' Maximal PSII photochemical yield in a dark- or light-adapted state of phytoplankton, 

respectively 

Φf or Φf' PSII CFY in a dark- or light-adapted states of phytoplankton, respectively 

Φo or Φo'
 Minimum PSII CFY in a dark- or light-adapted states of phytoplankton, respectively 

Φm or Φm' Maximum PSII CFY in a dark- or light-adapted states of phytoplankton, respectively. 

Subscripts (ST) or (MT) designate measurements at PSII single- or multi-turnover time scale, 

respectively 

PY Maximal potential PSII photochemical yield in a dark- or light-adapted state of phytoplankton 

measured at ST time scale 

V water volume that contains phytoplankton, m3 

σ Chl absorption cross-section, m2 

I fluorescence excitation intensity, photons m−2 s−1 

nPSII fraction of Chl molecules associated with PSII 

2. Photo-physiological regulation of chlorophyll fluorescence (model analysis) 

Chl molecules are incorporated in phytoplankton cells and, therefore, are not evenly 

distributed in the water. Nonetheless, CC is commonly accepted for estimating the average 

Chl biomass per unit of water volume containing phytoplankton. Most in vivo CF originates 

from the Chl molecules of the light-harvesting antenna of photosystem II (PSII) in the 

photosynthetic apparatus of phytoplankton [39]. The relationship between CF intensity and 

CC can be described as 

 
1

PSII
* * . 

A f f
CF K CC N M V I n CC k CCσ−

= = Φ = Φ  (1) 

Here, V is the water volume containing phytoplankton and exposed to fluorescence excitation, 

σ is the absorption cross-section of Chl molecules, I is the excitation intensity, Φf is the PSII 

CF yield (CFY), nPSII is the fraction of Chl molecules associated with PSII, NA is the 

Avogadro constant, and M is Chl molar mass. The conventional approach to in vivo CC 

fluorescence measurements is determining the parameter 
1

PSIIA f
K N M V I nσ−

= Φ via 

fluorometer calibration and using it for conversion of the CF measurements into the CC units: 
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1 .CC K CF
−=  The calibration involves the measurements of CF (with the fluorometer to be 

calibrated) and CC (using one of the independent analytical techniques) in phytoplankton-

containing water samples, and regression analysis of CF vs. CC. HPLC [40], 

spectrophotometric [41], or fluorometric [42] methods can be used for CC measurements. A 

similar approach works well for measuring concentration of dissolved fluorescent organic 

molecules, but the accuracy of CC assessments from in vivo CF measurements is often 

compromised. There are various structural and physiological factors and regulatory 

mechanisms in phytoplankton that may affect the biological variables nPSII, σ, and Φf in Eq. 

(1) and, respectively, the CF/CC ratio, making applicability of even frequent field calibrations 

problematic. A detailed discussion on this topic is beyond the scope of this article; some 

relevant information can be found in [1, 19, 20, 35]. Below we use a simplified biophysical 

model (following [19, 20, 39, 43]) to analyze the most relevant aspects of the CFY photo-

physiological variability as one of the major factors affecting the CF/CC ratio. 

The PSII CF and thermal dissipation represent two channels of energy losses 

accompanying the PSII photochemical reactions. The quantum yields of photochemistry and 

fluorescence for dark-adapted PSII can be described, respectively, as: 

 ( )/p p p f dfAk Afk k kΦ = + +  (2) 

 ( )/ .f f p f dk Afk k kΦ = + +  (3) 

Here, kp, kf,,and kd are, respectively, the rate constants of photochemistry in functional PSII 

reaction centers (RCs), fluorescence and constitutive heat dissipation. The parameter f 

represents the fraction of the photochemically functional PSII reaction centers (RCs) (0< f < 

1); A represents the fraction of the open functional PSII RCs (0<A<1). The dependence of Φp 

and Φf on these photochemical parameters is described in terms of photochemical quenching 

(PQ). The magnitude of f mainly depends on the nutrient supply and light conditions, while A 

is determined by the dynamic equilibrium between photochemical closing and re-opening of 

PSII RCs (e.g., [25]). In particular, when A = 0 (all PSII RCs are closed under the intense, 

PSII saturating incident light), Φf reaches its maximal magnitude, Φm: 

 ( )/ .m f f dk k kΦ = +  (4) 

When A = 1 (all PSII RCs are open in darkness), Φf reaches its minimal magnitude: 

 ( )/ .o f p f dk fk k kΦ = + +  (5) 

In darkness (A = 1) the Φp maximal potential magnitude can expressed via Φo and Φm as 

 ( )/ ( ) /
m

p p p f d m o mfk fk k kΦ = + + = Φ − Φ Φ    (6) 

The Φo/Φm ratio can be calculated from Eq. (6) as 

 / 1 .
m

o m p
Φ Φ = − Φ   (7) 

An exposure to excessive ambient light may result in the gradual development of non-

photochemical quenching (NPQ) that enhances thermal dissipation of the absorbed light 

energy. There are several photo-protective NPQ mechanisms (e.g., [39]). Depending on the 

intensity of incident light and the NPQ mechanisms involved, NPQ may develop over time 

scales ranging from seconds to minutes [44]. Recovery from NPQ action in dark conditions 

may require several minutes to several hours. NPQ can be described with an additional NPQ 

rate constant, kN [39]. The actual maximal and minimal CFY magnitudes, and the maximal 

potential quantum yield of PSII photochemistry for the NPQ-affected photosystem can be 

expressed, respectively, as 
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 ( )' /p p p f d NfAk Afk k k kΦ = + + +  (8) 

 ( )' /f f p f d Nk Afk k k kΦ = + + +  (9) 

 ( )' /m f f d Nk k k kΦ = + +  (10) 

 ( )' /o f p f d Nk fk k k kΦ = + + +  (11) 

 ( )' / ( ' ' ) / ' .
m

p p p f d N m o mfk fk k k kΦ = + + + = Φ − Φ Φ    (12) 

From Eqs. (4), (10): 

 ( )/ ' 1 / 1 .m m N f dk k k NPQΦ Φ = + + = +     (13) 

From Eqs. (5), (6), (11), and (12): 

 ( ) ( )
1

1
/ ' / ' 1 / 1 /

m m

o o p p N p f d p Nk fk k k fk k NPQ
−

−
Φ Φ = Φ Φ = + + + = + +       (14) 

 ( ) ( )
1

1
 / ' / ' 1 / 1 / .f f p p N p f d p Nk Afk k k Afk k NPQ

−
−

Φ Φ = Φ Φ = + + + = + +      (15) 

Here, ( )/ ,N f dNPQ k k k= + a parameter that is often used for quantitative NPQ assessment 

[45]. Using Eqs. (13)-(15), the relative NPQ-induced changes in the fluorescence and 

photochemical yields can be estimated as 

 ( )
1

1
( ' ) / ' ( ' ) / ' /  f f f p p p p NAfk k NPQ

−
−

Φ − Φ Φ = Φ − Φ Φ = +    (16) 

 ( )
1

1
( ' ) / ' ( ' ) / '  /

m m m

o o o p p p p Nfk k NPQ
−

−
Φ − Φ Φ = Φ − Φ Φ = +  (17) 

 ( ' ) / ' .
m m m

NPQΦ − Φ Φ =  (18) 

Thus, NPQ development should cause the most pronounced decrease in Φ'm. Declines in 

Φ'o and Φ'p
m
 induced by NPQ are smaller and dependent on the phytoplankton physiological 

status (described by f in the model). 

From Eqs. (7), (14), and (15) it follows that 

 /  '  / ' , and
f p f p

Φ Φ =Φ Φ    (19) 

 (1/ 1) ' (1 / ' 1).
m m

m p m p
Φ Φ − = Φ Φ −  (20) 

3. Recommendations on CF measurement protocol for improved CC assessments 

Thus, the phytoplankton CFY generally depends on the PSII photochemical functionality and 

the actual intensity of the incident light (both determine the PQ), as well as on the 

phytoplankton light exposure prior to the measurements that determine the NPQ. A potential 

range of the CFY photo-physiological variability can be estimated using the above analysis. 

The maximum value of Φp
m
 ~0.65 measured in healthy phytoplankton [5, 20] would result in 

Φm/Φo ~3 (Eq. (6)). Thus, the Φf magnitude can vary up to 3-fold, depending on the actual PQ 

effect (Eq. (2)). Our field data show that up to a 5-fold NPQ-induced CFY decline can be 

observed in the subsurface water column around noon (e.g., Fig. 3A), depending on the light 

conditions and mixing regime. The maximum range of CFY natural variability caused by both 

PQ and NPQ can be estimated then as 15. This estimate is markedly close to the ~12-fold 

CF/CC variability observed in the field (e.g., [46]), suggesting that the CFY photo-
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physiological regulation may be one of the major factors affecting the overall variability in 

the relationship between CF and CC. 

During the active CF measurements, the PQ and NPQ magnitudes may depend on both 

ambient and CF excitation light. CF efficiency can vary a great deal, depending on 

environmental conditions, measurement protocols and phytoplankton physiological status. 

This provides unique opportunities for fluorescence assessment of phytoplankton photo-

physiological characteristics (e.g., [25, 38]). On the other hand, CFY variability needs to be 

minimized or accounted for to improve the accuracy of CC fluorescence assessments. 

Phytoplankton exposure to ambient light activates a complex chain of photosynthetic 

reactions and photo-adaptive physiological transformations and may result in NPQ 

development that significantly affects the CFY magnitude [39, 44, 47]. If measurement 

conditions permit, keeping water samples in low-light conditions for at least one hour before 

the measurement may restore the dark-adapted Φo level of CFY, which is independent of the 

prior “light history” of phytoplankton. It should be noted that after phytoplankton exposure to 

intense irradiance, even several hours of dark adaptation may be insufficient for complete 

recovery from NPQ [44] (for example, see Fig. 3B and Discussion). 

Optical isolation of the measured sample volume eliminates the PQ component associated 

with the ambient light thus minimizing the overall CFY variability. If ambient light is 

blocked, PQ is determined by the intensity of excitation light and depends on PSII 

photochemical functionality (determined by f in the model). The PQ component and CFY 

dependence on the PSII physiology can be further minimized by using the PSII saturating 

fluorescence excitation that dynamically closes the PSII RCs to reach the CFY~Φm at the 

beginning of the fluorescence measurement. This also eliminates the need for optical isolation 

of the measured sample volume (PQ~0 regardless of the ambient light), which may simplify 

the in situ CF measurements. 

The physiological origin of in vivo CF results in a complex CFY time transient after 

initiating the excitation known as Kautsky effect (e.g [44, 47]. It includes a polyphasic rise 

from the initial Φo level to its maximum Φm value (Φ'o and Φ'm, respectively, for light-

adapted phytoplankton) followed by a polyphasic decline to some stationary CFY magnitude. 

The induction rise begins with a fast, photochemical phase (< 1 ms) followed by several 

thermal phases to reach Φm in ~100 ms under intense PSII saturating excitation [44, 47]. CFY 

remains almost unchanged at the maximum level for several seconds and gradually declines 

after that over 0.1 – 1 minute due to the development of excitation-induced NPQ. 

Thus, CFY may continuously vary during the in vivo CF measurement due to the 

physiological mechanisms involved in the Kautsky effect, and the integral CF value is usually 

determined by the average CFY magnitude over the measurement time (this is discussed 

below regarding the ALF CF measurements). Several instrumental factors (e.g., excitation 

intensity and duration, measurement time, sample exposure to the excitation, etc.) may affect 

the average CFY value and result in a variable, instrument and protocol dependent CF/CC 

relationship. For example, the CF magnitude may appear to be dependent on the sample flow 

rate through the measurement chamber (e.g., [48]). 

If a PSII saturating excitation is used for minimizing the PQ component of the CFY 

variability, it may be beneficial to limit the sample exposure to the excitation to ~1 second. 

Then the CF measurement will be conducted for most of the measurement time at the 

maximum level of CFY, independent of PSII photochemical functionality and not affected by 

the excitation-induced NPQ that would develop at the longer sample exposure. The actual 

measurement time may be longer if the measurements are conducted in a fast enough sample 

flow to limit the exposure time of the measured sample volume. 

To summarize, the effect of CFY photo-physiological variability on the CF measurements 

can be reduced by the following (referred below as a “four-step measurement protocol”): 
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1. Isolating measurement volume from ambient light to reduce its effect on the CFY 

variability. 

2. Using PSII saturating fluorescence excitation to minimize the CFY dependence on 

PSII photochemical functionality. 

3. Optimizing sample exposure to the excitation to minimize the CFY variability (~1 

second exposure may be optimal for the PSII saturating excitation). 

4. Providing phytoplankton dark adaptation before the measurements (if conditions 

permit). 

It is technically difficult to provide phytoplankton dark adaptation when conducting 

daytime in situ or flow-through underway shipboard measurements. The CF intensity may be 

NPQ-affected due to phytoplankton exposure to the ambient light in the water column. The 

NPQ effect may depend on the unknown phytoplankton “light history” and compromise the 

accuracy of CC fluorescence retrievals. The above model analysis shows that the PSII 

photochemical yield also exhibits the NPQ down-regulation (Eqs. (14), (15)). Therefore, the 

concurrent PY measurements may provide a potential way to adjust the CF retrievals for the 

NPQ effect. Equations (19) and (20) illustrate this idea, showing that the fluorescence 

parameters Φf/Φp and Φm(1/Φp
m
 −1) should remain invariant regardless of the NPQ 

magnitude and equal to their values in the PSII dark-adapted state. There are various 

measurement protocols and instruments for PY assessments [12, 37, 38, 49], so the practical 

implementations of this approach needs evaluation and optimization on a case-by-case basis. 

Below, we demonstrate with field data that the CF NPQ-adjustment using the PY 

measurements may provide a significant advantage over the conventional, CF-based CC 

assessments when it is problematic to provide phytoplankton recovery from the NPQ (e.g., in 

situ and flow-through underway retrievals). On the other hand, a potential dependence of the 

NPQ-invariant parameters on various physiological mechanisms needs to be evaluated (see 

Discussion). 

4. Field measurements with advanced laser fluorometer 

The field measurements with the Advanced Laser Fluorometer (ALF) were used to evaluate 

our analytical conclusions and proposed measurement protocols for improving the accuracy 

of CC fluorescence assessments. ALF is a compact field instrument that provides both 

spectrally and temporally resolved fluorescence measurements. Its design and measurement 

protocols are described in detail in [12]. The ALF conducts spectral deconvolution of the 

laser-stimulated emission to provide measurements of Chl, phycoerythrin, and CDOM 

fluorescence. The fluorescence intensities are normalized to water Raman scattering to 

account for variability in water optical properties. The ALF measurements of variable 

fluorescence are spectrally corrected for the non-CF background to improve the accuracy of 

retrievals. 
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Fig. 1. A map of shipboard ALF underway flow-through measurements in the Delaware and 

Chesapeake Bays, April 15–16 2008. Green dots display the sampling locations for laboratory 

measurements of Chl fluorescence and concentration. 

The following features of the ALF design and measurement protocols make this 

instrument suitable for the field test of the above analytical conclusions. The ALF 

measurement cell is located in the sample compartment inside the instrument case and 

isolated from ambient light (condition 1 in Section 3). The spot size of the 405 nm laser 

excitation beam used for CF and VF measurements is appropriately adjusted to saturate PSII 

over ~100 µs (condition 2 in Section 3), thus providing the PY retrievals at PSII single-

turnover (ST) time scale (e.g., [25, 45]). The spectral integration time with 405 nm excitation 

is limited to 1 second to avoid development of the laser-stimulated NPQ that happens over 

longer time scales (condition 3 in Section 3). About one hour of dark adaptation is provided 

for discrete water samples before in vivo fluorescence measurements with the ALF instrument 

(condition 4 in Section 3). 

The results reported in this article are essentially based on comparison of the CF and PY 

measurements in the dark- and light-adapted states of phytoplankton photosynthetic 

apparatus. The ALF CF field measurements compliant with conditions 1–4 of the above 

measurement protocol are compared below with the independent HPLC CC retrievals. The 

use of PSII saturating excitation for ALF measurements of both PY and CF suggests the 

NPQ-invariance of parameter CF(PY
−1

-1) (see Eq. (20)). The invariance of this and another 

fluorescence parameter, CF/PY, which can be formally derived from Eq. (19), are evaluated 

using the ALF field measurements and discussed below. 

Some aspects of the ALF CF measurements relevant to optimizing the sample exposure 

time need to be briefly discussed. The internal instrument pump for discrete sample analysis 

operates at the flow rate of 0.1 L/min [12]. It results in ~100 ms time of phytoplankton 

exposure to the PSII saturating excitation (i.e. time of residence in the laser beam). This time 

corresponds to the PSII multiturnover time (MT) scale, and CFY exhibits a polyphasic rise 

typical for the Kautsky effect [44, 47]. The initial, photochemical phase is identical to the ST 

fluorescence induction used for the ALF PY measurements. It lasts ~100 µs, during which the 

PSII RCs are gradually closed and CFY reaches its maximal ST magnitude Φm(ST) [45]. This 

initial phase is followed by several thermal phases of continued CFY rise to reach its 

maximum MT level Φm(MT) ~1.5Φm(ST) [45] at the end of 100 ms exposure time (Fig. 1 in 

[47]). Though the ALF spectrometer integrates the laser-stimulated emission over ~1 s, the 

CF magnitude yielded by the ALF measurements in the sample flow reflects some average 

over the exposure time CFY magnitude, Φm(ST) < CFY < Φm(MT). 
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During the underway measurements described below in Results, the 1 L/min flow rate has 

resulted in 10 ms phytoplankton exposure time. Since the intense (~0.1 mol photons m
−2

 s
−1

) 

fluorescence excitation is used in the ALF instrument, the CFY almost reaches Φm(MT) during 

the 10 ms exposure and the resulting CF magnitude is only 10% lower than measured in the 

samples at 0.1 L/min flow rate (see Results and Discussion). Generally, this magnitude is 

determined by the fluorescence excitation intensity and the sample flow rate. The latter may 

explain the CF dependence on the flow rate often observed with field fluorometers (e.g., 

[48]). 

The underway shipboard measurements with the ALF instrument were conducted in the 

Delaware and Chesapeake Bays courtesy of the College of Marine Science (University of 

Delaware) onboard R/V Hugh R. Sharp during its non-stop transit from Lewes (Delaware) to 

Cambridge (Maryland) (see the map in Fig. 1). The water was continuously sampled by the 

shipboard sampling system at ~2 m below the water surface and directed to the ALF 

instrument through a 15 m silicon tube at the flow rate of 1 L/min. The delay between 

sampling and measuring the water was ~30 seconds. 

The ALF measurement cycle included two measurements of spectral emission in 400–800 

nm range using 405 and 532 nm laser excitation, respectively, and the temporally resolved 

measurement of CF induction over 100 µs in the spectral range of 670-695 nm using the 

pump-during-probe measurement protocol [12, 25]. The spectral integration time was 1 s, and 

the laser excitation was turned off before and after the spectral measurements. The 

fluorescence induction waveforms were averaged over 5 to 10 flashes of laser excitation at 

405 nm and 10 Hz repetition rate. 

Twenty water samples were collected along the transect from the discharge of the flow-

through system in the 500 mL dark-amber glass bottles and stored in a dark cooler filled with 

ice. The sampling locations are marked with numbers in Fig. 1. The ALF fluorescence 

measurements of the samples were conducted at Horn Point Laboratory (University of 

Maryland Center for Environmental Science) courtesy of Dr. Harding in about 1 hour on 

arrival to Cambridge. The samples were pumped at 0.1 L/min from the sample bottles through 

the ALF flow measurement cell. Ten sequent spectral measurements of the sample emission 

stimulated at 405 nm and 532 nm were conducted in the sample flow. In addition, 10 

measurements of fluorescence induction, each averaged over 10 excitation shots, were 

conducted between the spectral measurements. The spectral and fluorescence induction 

measurements were averaged over the sequent acquisitions. The collected samples were also 

filtered for HPLC pigment analysis conducted later at the Pigment Analysis Facility of Horn 

Point Laboratory. 

5. Results 

Figure 2 displays the results of transect measurements shown in Fig. 1. The measurements 

began at 19:18 May 15, 2008, continued overnight (see the sunrise mark at 06:24) and were 

finished at 10:43 May 16, 2008 on arrival at Cambridge. The specific features of the 

distributions can be related to their locations on the map in Fig. 1 via numbers that represent 

the sampling points in both figures. 

To evaluate the applicability of the earlier instrument calibration, the CF underway 

transect measurements, CFU (the subscript “U” here and below denotes the underway data), 

were converted into CC units (dark green line in Fig. 2). The conversion equation 

4.40
U

CC CF= was derived from the correlation (R
2
 = 0.93) between CC retrievals with high 

performance liquid chromatography (HPLC) and the ALF CF measurements of the dark-

adapted water samples representing diverse coastal and estuarine waters (Fig. 7A in [12]). As 

evident from comparison with the HPLC CC measurements in water samples collected along 

the transect (black squares in Fig. 2), the ALF CC assessments based on the nighttime or low- 

light measurements were in good agreement with the respective HPLC measurements 
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Fig. 2. HPLC measurements of Chl concentration (CC) (black squares) and ALF underway 

fluorescence CC retrievals along the transect displayed in Fig. 1. Dark green: CC distribution 

calculated from the underway Chl fluorescence measurements (CFU) as CC = 4.40CFU using 

earlier ALF calibration with dark-adapted samples. Blue: ALF underway measurements of 

PSII photochemical yield (PYU). Light green: CC distribution calculated as CC = 1.88CFU/PYU 

using correlation in Fig. 5C. 

(samples 1–14). On the other hand, the morning ALF fluorescence assessments showed 

significant, up to 5-fold, CC underestimation of the HPLC CC measurements. 

 

 

Fig. 3. Correlation between the HPLC measurements of Chl concentration (CC) in water 

samples 1–20 (Figs. 1, 2) and (A) underway Chl fluorescence measurements at the sampling 

locations (CFU) or (B) CF measurements in the dark-adapted water samples (CFS). Diamonds 

and circles represent the data from the nighttime and morning portions of the transect, 

respectively (marked as 1–14 and 15–20 in Figs. 1, 2). The framed and unframed regression 

equations are calculated for nighttime and entire data sets, respectively. 

Accordingly, the nighttime ALF CFU transect measurements at sampling locations 1–14 

showed high correlation (R
2
 = 0.90) with the HPLC CC retrievals for the respective samples 

(diamonds in Fig. 3A), and the CC/CF ratio at these locations was close to the magnitude 

shown by the earlier ALF calibration for the dark-adapted samples (4.77 vs. 4.40). The 

morning ALF transect measurements at sampling locations 15–20 showed up to 5-fold lower 

and variable CFU per unit of CC (circles in Fig. 3A). That resulted in poor CFU vs. CC 

correlation for the entire data set that included both the nighttime and morning measurements 
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(R
2
 = −0.22). Similarly, the laboratory CF measurements in samples 1–14 from the low-light 

or nighttime of the transect showed high correlation with the HPLC CC retrievals (diamonds 

in Fig. 3B). The CC/CF ratio 4.35 for these samples was very close to 4.40 from the earlier 

ALF calibration [12], which was based on analysis of the dark-adapted samples. The morning 

samples 15–20 showed 10-30% lower and variable CFU per unit of CC (circles in Fig. 3B) 

that resulted in lower overall CFU vs. CC correlation (R
2
 = 0.80). 

 

Fig. 4. (A): Comparison of Chl fluorescence in the dark-adapted water samples (CFS) and 

underway measurements at the sampling locations (CFU). (B): Comparison of PSII 

photochemical yield measured in the dark-adapted water samples (PYS) and underway at the 

sampling locations (PYU). Diamonds and circles represent the nighttime (samples 1-14 in Figs. 

1 and 2) and morning (samples 15-20) parts of the transect, respectively. (C) and D: 

Comparison of fluorescence parameters CF(PY−1-1) and CFU/PYU for the data sets displayed in 

panels (A) and (B). 

Figures 4A and 4B allow direct comparison of the CFS and PYS magnitudes (the subscript 

“S” here and below denotes the sample measurements) measured in the dark-adapted samples 

and the respective underway CFU and PYU measurements at the sampling locations. 

Consistent with the plots in Fig. 3, the nighttime portion of the data (samples 1–14) show high 

correlation between the underway and sample measurements (R
2
 = 0.99 and 0.84 for CF and 

PY, respectively). The morning underway CFU and PYU magnitudes were noticeably lower 

than the respective CFS and PYS values, which resulted in the reduced overall correlations for 

the entire set of samples 1–20 (0.68 and 0.26 for CF and PY, respectively). 

Assuming that the differences between the nighttime and morning portions of the data 

displayed in Figs. 2, 3, 4A and 4B were caused by the NPQ of CF and PY in the sampled sub-

surface water in the morning hours, the NPQ invariance of the fluorescence parameters in 
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Eqs. (19) and (20) can be evaluated. The CF(PY
−1

-1) magnitudes showed excellent correlation 

(R
2
 = 0.96) for the entire data set that includes both nighttime and morning samples 1–20 and 

the respective underway measurements at the sampling locations (Fig. 4C). Similarly high 

correlation (R
2
 = 0.95) was observed for the CF/PY parameter (Fig. 4D). 

As evident from Figs. 5A and 5B, the CF(PY
−1

-1) magnitudes showed reasonably good 

correlation with the HPLC CC retrievals for both the underway and sample measurements (R
2
 

= 0.74 and 0.83, respectively). The CF/PY parameter showed noticeably better correlations 

with the HPLC CC retrievals for both the underway and sample measurements (R
2
 = 0.93 and 

0.96, respectively, Figs. 5C and 5D). For evaluation, the CCCF/PY transect distribution (light 

green line in Fig. 2) was calculated using the ALF underway transect measurements of CFU 

and PYU, and the regression equation 1.88 /
U U

CC CF PY= from Fig. 5C. 

 

Fig. 5. (A): Correlations between the HPLC measurements of CC in water samples and 

fluorescence parameters CF(PY−1-1) and CF/PY calculated from Chl fluorescence (CF) and 

PSII photochemical yield (PY) measured in the dark-adapted water samples (B) and (D) and 

the underway flow-through CF and PY measurements at the sampling locations (A) and (B) 

marked as 1–20 in Figs. 1 and 2. Diamonds and circles represent the nighttime (samples 1-14) 

and morning (samples 15-20) parts of the transect, respectively. 

6. Discussion 

6.1. Practical implementation of the four-step protocol 

A four-step measurement protocol is proposed in section 3 to reduce the PQ and NPQ effects 

on the CF retrievals. The ALF in vivo CF measurements using this protocol show high 

correlation with independent HPLC CC retrievals (for example, see diamonds in Fig. 3A and 

3B; see also Fig. 7A in [12]). Recent ALF field deployments have confirmed that in vivo CF 
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measurements compliant with the four-step protocol can indeed provide high-accuracy CC 

assessments. In coastal and estuarine waters that are typically dominated by diatoms and 

dinoflagellates, the relationship between CF and CC can be described by a simple regression 

equation (e.g., 4.40CC CF= for the ALF measurements [12]) that does not show significant 

seasonal or regional variability. A more complex, non-linear relationship may need to be used 

in the offshore oceanic waters, particularly in the frontal zones that exhibit strong gradients in 

physical and chemical properties [50]. 

Some aspects of the practical implementation of the four-step protocol are briefly 

discussed below. Many benchtop and some in situ fluorometers are equipped with a dark 

measurement chamber that provides optical isolation of the phytoplankton-containing water 

volume (condition # 1 of the protocol). Technically, the PSII saturating excitation (condition 

# 2) can be provided by selecting an appropriate light source for fluorescence excitation and 

through instrument design. For example, 405 and 532 nm lasers are used for this purpose in 

the ALF instrument. The small cross-section and low divergence of the laser beam simplifies 

optimization of the optical design. The narrow-bandwidth laser excitation minimizes the 

spectral bandwidth of the water Raman scattering and allows for spectral deconvolution of the 

overlapped fluorescence bands of seawater constituents [12]. Light emitting diodes used for 

fluorescence excitation in various instruments, including PSII saturating fluorometers for 

measuring variable fluorescence, can provide a cost-efficient alternative to lasers. 

Some relevant aspects of optimizing sample exposure to the excitation light (condition # 

3) can be illustrated using the field data presented in Results. While both nighttime underway 

CF measurements and analyses of nighttime water samples showed high correlation with CC 

(R
2
 = 0.90 and 0.95, respectively in Fig. 3A, B), the slopes in the correlation equations were 

noticeably (~10%) different. The regression equation in Fig. 4A also suggests that the 

underway measurements yielded 10% lower CF magnitudes than the sample measurements. 

As discussed in section 4, this difference can be explained by shorter exposure of 

phytoplankton to the excitation due to the 10-fold faster flow rate used for the underway 

measurements. Much stronger CF dependence on the sampling flow rate can be observed 

under less intense fluorescence excitation intensity used in many instruments (e.g., [48]). 

Generally, the sample exposure time needs to be optimized to reduce the CF dependence 

on the measurement protocol. For CF measurements at the MT PSII turnover scale using PSII 

saturating excitation, it can be optimized with regard to the Kautsky effect [44, 47]. Under 

these conditions, a 1–3 second exposure may appear to be optimal. Then, after reaching 

Φm(MT) during the initial 100–200 ms of Kautsky induction (see Section 4), CFY would remain 

at this level during most of the exposure time. When measuring the stationary sample, the CF 

measurements can begin when CFY reaches Φm(MT) and end before beginning manifestation of 

excitation-induced NPQ, which develops after ~3 seconds under such conditions (Fig. 1 in 

[47]). The signal integration time can be adjusted in some range (assuming CFY is still 

~Φm(MT) during the measurement) to optimize the measurement protocol. In the case of flow-

through measurements, the signal integration time can be longer than the exposure time to 

ensure the desirable signal-to-noise ratio. 

In practice, the need for prolonged (~1 hour) phytoplankton dark adaptation before the 

fluorescence measurements (condition # 4) limits the four-step protocol mainly to laboratory 

use (including shipboard measurements). For field CF measurements in stationary settings 

(e.g. moorings, piers, etc.), the instrument can be equipped with a sampling chamber to 

provide adequate dark adaptation prior to the measurements. It should be noted that, based on 

our field experience, even several hours of dark adaptation is often insufficient for complete 

recovery from the photoinhibitory NPQ [39, 44] developed in the PSII RCs in subsurface 

water exposed to excessive solar irradiance. For example, the “leftover” NPQ effect was 

evident in CF measurements of the morning surface samples discussed in Results. After 2–3 

hours of dark adaptation, these samples showed an increase in CF/CC magnitudes vs. the 

real-time underway measurements, which were strongly affected by NPQ (circles in Figs. 3B 
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and 3A, respectively), but these values were still variable and lower than the night-collected 

samples (diamonds in Fig. 3B). Only one morning sample (# 15 in Fig. 2) that had the 

smallest exposure to solar irradiance after sunrise and the longest (~4 hour) duration of dark 

adaptation, showed complete recovery from NPQ. This is indicated by the fact that the 

CF/CC ratio is identical to the night-collected samples (CFS = 4 in Fig. 3B). Note that the 

same underway and sample data showed no difference between the morning and night 

measurements when the NPQ-invariant fluorescence parameter was used to correlate with CC 

(Figs. 5C and 5D). 

6.2. CF adjusting for NPQ using PY measurements 

In the case of continuous underway or in situ measurements, it is practically impossible to 

provide dark adaptation long enough to eliminate NPQ caused by phytoplankton exposure to 

ambient light prior to measurement. This may result in significant uncertainty in CC 

fluorescence assessments using instrument calibration with dark-adapted phytoplankton (for 

example, see Fig. 2). Even with an adequate analytical model, it is difficult to estimate the 

NPQ magnitude that is determined by the usually unknown phytoplankton light history. The 

above analysis shows that it may be possible to adjust the NPQ-affected CF measurements 

using concurrent measurements of variable fluorescence that yield PY magnitudes. The field 

data in Results allows for evaluating the feasibility of CC assessment using the NPQ-invariant 

fluorescent parameters derived from CF and PY measurements. In particular, the data sets 

used for calculation of CF(PY
−1

-1) and CF/PY data in Figs. 4C and 4D included both NPQ-

free and NPQ-affected data from sampling locations 1–14 and 15–20, respectively (Fig. 2). 

Despite significant variability in the NPQ magnitudes (Figs. 3, 4A, 4B), both CF(PY
−1

-1) and 

CF/PY variables showed strong correlation (R
2
 = 0.96 vs. 0.95, respectively, in Figs. 4C and 

4D), thus demonstrating their NPQ invariance. 

It should be noted that both CF and PY were measured using PSII saturating excitation. 

Under this condition for the dark-adapted phytoplankton, PY = Φp
m
 [12] and CF is 

proportional to Φm (see Section 4); the same is valid for light-adapted phytoplankton with the 

respective change in notation, Φ'p
m
 and Φ'm. Thus, the NPQ invariance of CF(PY

−1
-1) (Fig. 

4C) is fully consistent with the above model analysis (see Eq. (20)). On the other hand, 

despite the similarity between CF/PY and Φf /Φp ratios, the PSII saturating excitation is not 

described by Eq. (19), which actually predicts NPQ-invariance of Φf /Φp. Therefore, the 

experimentally observed NPQ invariance of the CF/PY parameter (Fig. 4D) is not justified by 

the simplified biophysical model discussed in Section 2. Nonetheless, this observation is still 

reported here, as it may provide new insight for better understanding of phytoplankton 

photosynthetic regulation in natural conditions and assist in improving CC fluorescence 

assessments. 

Though both parameters performed equally well in terms of NPQ-invariance (Figs. 4C 

and 4D), the CF/PY ratio for both underway and sample retrievals showed better correlation 

with the HPLC CC measurements (R
2
 = 0.93 and 0.96, respectively; Fig. 5). The CF(PY

−1
-1) 

parameter calculated from the underway measurements at sampling locations 1–20 also 

showed a dramatic improvement in correlation with the HPLC CC data as compared to the 

CF magnitudes for the same data set (R
2
 = 0.74 vs. −0.22 in Figs. 5A and 3A, respectively). 

Thus, the CF(PY
−1

-1) parameter can be used for reasonably accurate CC assessments from 

NPQ-affected measurements of CF and PY. A potential downside is that this parameter may 

appear to be more sensitive than CF to potential variability in the PSII photochemical 

functionality (determined by f in our model). Indeed, according to the model, 

( )1
1 ~ / / ,

m

o p f pCF PY F F k fk
−

− = while CF does not depend on f due to the PSII-saturating 

excitation. In particular, the significant transect variability in PYU (and, respectively, f (see 

Eq. (6))) evident in the Fig. 2 might account for CF(PY
−1

-1) correlation with HPLC CC that 
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was lower than for nighttime, f-independent underway CF measurements (0.74 vs. 0.90 in 

Figs. 5A and 3A, respectively). 

This may also explain the only marginal improvement in the CF(PY
−1

-1) correlation with 

HPLC CC as compared to the CF correlation for the dark-adapted samples (R
2
 = 0.83 vs. 0.80 

in Figs. 5B and 3B, respectively). If our interpretation is correct, the PQ variability in CF was 

minimized by using PSII saturating excitation, but the CF magnitudes in the morning samples 

were still moderately NPQ-affected because of their incomplete recovery from NPQ (empty 

dots in Fig. 3B). This “leftover” NPQ effect was not manifested in the CF(PY
−1

-1) parameter, 

but the overall transect variability in the PSII photochemical functionality might have affected 

the ( )1
1 /CF PY CC

−
− relationship. 

Similar comparisons for the CF/PY parameter revealed significant improvements in 

correlations with HPLC CC retrievals for both the underway and sample measurements: R
2
 = 

0.93 vs. −0.22 in Figs. 5C and 3A; R
2
 = 0.96 vs. 0.80 in Figs. 5D and 3B. Though the use of 

CF/PY parameter was not justified by the simplified biophysical model and needs further 

consideration, the CF/PY ratio may be advantageous vs. the CF(PY
−1

-1) parameter for 

minimizing the effects of both NPQ and PQ variability on the accuracy of CC fluorescence 

assessments. For evaluation, the linear regression relationship CC = 1.88CFU/PYU between 

CC and underway fluorescence measurements at the sampling locations (Fig. 5C) was used to 

calculate the CC transect distribution (light green line Fig. 2). As evident from comparison 

with the independent CC sample measurements, the concurrent CF and PY measurements 

provided accurate high-resolution CC data despite the significant NPQ and PSII physiological 

variability in the water masses. 

7. Conclusion 

The biophysical analysis and field measurements show that significant (up to 15-fold) photo-

physiological variability in fluorescence yield is one of the major factors contributing to the 

overall variability in in vivo chlorophyll fluorescence per unit of chlorophyll concentration. 

The fluorescence yield and PSII photochemical efficiency are controlled by PQ and NPQ 

mechanisms and depend on incident light intensity, phytoplankton “light history”, PSII 

photochemical functionality, and other physiological factors. Minimizing the PQ and NPQ 

magnitudes can help to reduce the variability and improve the accuracy of CC fluorescence 

assessments. This can be achieved via isolation of the measurement volume from ambient 

light, PSII saturating fluorescence excitation, optimization of phytoplankton exposure to the 

excitation, and phytoplankton dark adaptation before the measurements. If the measurement 

conditions do not allow for dark adaptation (e.g., in situ or flow-though underway 

measurements from a moving platform), concurrent measurements of variable fluorescence 

can be used to adjust fluorescence intensity for non-photochemical quenching developed due 

to prior exposure to ambient light. The field evaluation in estuarine waters of the Chesapeake 

and Delaware Bays showed significant potential of this approach for improved fluorescence 

assessments of chlorophyll concentration. Nonetheless, it needs evaluation in more diverse 

coastal and offshore oceanic waters. An improved biophysical model needs to be developed 

to account for the complexity of the photo-physiological mechanisms involved. 
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