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Abstract: Cryptosporidiosis is a water- and food-borne zoonotic disease caused by the protozoon
parasite of the genus Cryptosporidium. C. hominis and C. parvum are the main two species causing
infections in humans and animals. The disease can be transmitted by the fecal–oral route as well as
the respiratory route. The infective stage (sporulated oocysts) is resistant to different disinfectants
including chlorine. Currently, no effective therapeutic drugs or vaccines are available to treat
and control Cryptosporidium infection. To prevent cryptosporidiosis in humans and animals, we
need to understand better how the disease is spread and transmitted, and how to interrupt its
transmission cycle. This review focuses on understanding cryptosporidiosis, including its infective
stage, pathogenesis, life cycle, genomics, epidemiology, previous outbreaks, source of the infection,
transmission dynamics, host spectrum, risk factors and high-risk groups, the disease in animals
and humans, diagnosis, treatment and control, and the prospect of an effective anti-Cryptosporidium
vaccine. It also focuses on the role of the One Health approach in managing cryptosporidiosis at
the animal–human–environmental interface. The summarized data in this review will help to tackle
future Cryptosporidium infections in humans and animals and reduce the disease occurrence.

Keywords: cryptosporidiosis; one health; poultry; vaccines; epidemiology; waterborne pathogen;
foodborne pathogen; outbreaks

1. Introduction

Cryptosporidiosis is an enteric disease caused by a protozoon parasite belonging to
the genus Cryptosporidium. It is one of the most prevalent waterborne diseases and the
leading cause of waterborne disease outbreaks worldwide [1–3]. More than 58 million cases
of diarrhea are detected annually in children and are associated with protozoal infections.
Specifically, waterborne pathogens such as Cryptosporidium and Giardia were involved in the
World Health Organization’s “Neglected Disease Initiative” [4–6]. Although Cryptosporid-
ium infections are acute self-limiting gastroenteritis in immunocompetent individuals,
chronic and life-threatening diarrheal disease can develop in immunocompromised in-
dividuals. Neonates are highly susceptible to infections due to their immature immune
system, and they can become infected by ingestion of low doses of the parasite’s oocysts.
Annually, diarrheal diseases have caused up to 1.6 million deaths worldwide. One-third of
these deaths have been reported in children under 5 years due to contaminated drinking
water and poor hygiene [7]. Cryptosporidium causes up to 20% of all cases of diarrhea in
children in developing countries and causes fatal complications in HIV-infected persons [8].
Cryptosporidium is also responsible for more than 8 million foodborne illness cases world-
wide annually [9]. Cryptosporidiosis primarily affects people who are living in rural and
in urban slums, where there is a high probability of disease transmission and spread [10].

The human medical importance of Cryptosporidium was highlighted in 1982, after
the CDC report on Cryptosporidium-induced diarrheas in patients infected with Human
Immunodeficiency Virus (HIV). The international interest in Cryptosporidium as a public
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health problem began in 1993 after the largest global waterborne outbreak, when more
than 400,000 inhabitants in Milwaukee, Wisconsin, USA were infected with C. hominis
due to the consumption of contaminated drinking water [11–13]. From 2014 to 2016, the
center for disease control (CDC) in the USA reported a doubled increase in the number of
Cryptosporidium-associated waterborne infections [14] with an estimated 748,000 annual
human cases [15]. In addition, the risk of cryptosporidiosis is increased in developing
countries due to poor water and food sanitation [16]. In developing countries, children
under five years old are the most affected groups with Cryptosporidium [17]. The oocysts
can survive outside the host for several months and retain infectivity, despite adverse
environmental conditions such as salinity and the presence of chemicals [18–20]. Mixed
infections in calves with Cryptosporidium, enterotoxin Escherichia coli (ETEC) as well as
the corona- and rotaviruses, are considered the most important reason for the calf diar-
rhea complex [21]. To date, there are no effective chemotherapeutics for the treatment of
cryptosporidiosis [22,23]. Nitazoxanide and halofuginone in humans and animals are the
approved drugs against Cryptosporidium infection. However, their application does not
guarantee treatment efficacy [24–26]. Therefore, the control of cryptosporidiosis should
be based mainly on (1) reducing the prevalence of infection, (2) breaking the transmission
pathways between animals and humans, and (3) maintaining a good hygienic environment
for humans and animals. Information about the route and spread of Cryptosporidium, the
magnitude of infections, and the major sub-species prevailing in animals and humans, is
important to achieve effective control. This epidemiological information, in addition to the
One Health approach, will help to initiate planning for the control of cryptosporidiosis.

2. Life Cycle and Developmental Stages of Cryptosporidium

Cryptosporidium belongs to the Coccidia class of the phylum Apicomplexa. Cryptosporidium
have some features which differentiate them from all other Coccidia [27], including (1) intra-
cellular and extra-cytoplasmic localization, (2) forming of a “feeder” organ,
(3) presence of morphological (thin- or thick-walled) oocysts as well as functional (auto vs.
new-infection) types of oocysts, (4) small size of oocysts, (5) missing some morphological
characteristics such as sporocysts or micropyles, and (6) the resistance of Cryptosporidium to
all the available anti-coccidial drugs [27,28]. Cryptosporidium has a complex monoxenous
life cycle, which is divided into two phases: the asexual phase (sporogony and schizo-
gony/merogony) and the sexual (gamogony) phase. They proliferate and differentiate
during the invasion of the free-living stages of Cryptosporidium within the parasitophorous
vacuole under the brush border of the host cell located outside the cellular cytoplasm [29].
Cryptosporidium parasites can then attach to the cell surface and move along it for a short
time using gliding mobility before they start to enter the cell. Cryptosporidium does not
completely invade the cells actively, but they provoke the cells to embrace them with
a host-cell-derived membrane. Additionally, at the parasite–cell interaction phase, the
Cryptosporidium creates an actin-rich disk, a feeder organelle responsible for nutrition in-
take, as well as a channel into the cytoplasm of the host cell [30]. After Cryptosporidium
internalization in the host cells, the sporozoite divides inside the parasitophorous vacuole
to approximately 4 µm × 4 µm in diameter as a spherical trophozoite with an excentric
cell nucleus. After three asexual divisions (merogony/schizogony), the trophozoite is
divided into 5 µm × 5 µm large type-1 meront, which contains eight merozoites. The
merozoites and the sporozoites are similar in shape and size; however, the nucleus of the
merozoites is located more centrally to the cell compared to the sporozoites. Upon leaving
the parasitophorous vacuole, the merozoites begin their asexual development cycle in
the epithelial cells and develop Type-I meronts again, then the trophozoite. Otherwise,
the merozoites initiate the sexual development cycle through differentiation to type-II
meronts. Inside the meront, four merozoites develop by asexual division and after infection
of further enterocytes, they are divided into micro- and macro-gametes (gamogony). The
immature micro-gamontes are spherical, 5 µm × 4.5 µm in diameter, contain up to 16 pe-
ripherally located compact cell nuclei, and are precursors of the developing micro-gametes
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(Figure 1). They also have stubbed front ends and cell nuclei with no flagella. The mature
micro-gametes leave their host cell and fertilize the macrogametes. Macrogametes are
spherical, 5 µm × 5 µm in diameter and contain granulated cytoplasm and eccentrically
positioned wall-forming bodies. Tandel et al. have suggested the direct development of
gametes from type I meronts [31]. The zygote grows by syngamy and then goes through
sporogony-a meiosis-like process. The oocysts (thin- or thick-walled) with 4 haploid sporo-
zoites (sporulated oocysts) develop inside the parasitophorous vacuole (Figure 1) [30,32].
Thin-walled oocysts (about 20%) excystate in the host intestinal tract, leading to endoge-
nous autoinfection, and the thick-walled oocysts (about 80%) are extremely resistant to
several disinfectants, are excreted with the feces to the environment and can survive outside
the host for a long time [33]. The thick-walled oocysts represent the exogenous stage of
the Cryptosporidium parasite. Cryptosporidium oocysts are approximately 4µm× 6µm in
diameter, spheric to ovoid shape, have a residual body, and four banana-like or comma-
shaped sporozoites with a pointed front end and a stubbed hind end, where the nucleus
is localized [34–36]. The residual bodies are 2.4 µm × 2.5 µm in diameter and consist of
a spherical to ovoid membrane-bound globule (1.5 µm × 1.6 µm) and are surrounded by
small granules (0.2 µm × 1.2 µm). Cryptosporidium sporozoites are not encapsulated by a
sporocyst and the oocyst wall consists of an outer and an inner layer, and a pre-formed
junction that extends from one pole of the oocyst to approximately half of the oocyst [34].
Additionally, four sporozoites (5µm× 1µm in diameter) hatch out of the pre-formed joint
under the effect of temperature, pH, gall bladder salts, pancreas enzymes, and CO2 of the
host gastrointestinal tract. The free sporozoites adhere to the microvilli of the enterocytes
and lead to internalization using their proximal end. The sporozoites’ glycoproteins (GP40
and GP900 of 40 kDa and >900 kDa) and the circumsporozoite-like glycoprotein (CSL)
play an important role in the adhesion and invasion process of the sporozoites to the host
cells [32,37]. The host cell surrounds the sporozoites with membrane protrusions and
forms a parasitophorous vacuole in the brush border of the enterocyte. Interestingly, the
localization of the parasitophorous vacuole by Cryptosporidium spp. is different from that of
the other Apicomplexa; thus, Cryptosporidium spp. localization is described as intracellular,
but extracytoplasmic [38]. Additionally, the feeder organelle develops at the sporozoite
and host cell membrane contact point. They supply the maturing parasite with nutrients
and facilitate internalization [39]. The molecular components and mechanisms involved in
the Cryptosporidium development cycle have previously been described [30].

The infectious stage (sporulated oocyst) of Cryptosporidium was reported to be excreted
in large numbers in the feces of experimentally infected calves (up to 4 × 107 oocysts per
gram of feces) [40], or excreted with the bronchial exudates in the case of respiratory cryp-
tosporidiosis and which immediately contaminated the environment [41]. The sporulated
oocysts are very resistant to environmental factors and only a few chemical disinfectants
show efficacy against the sporulated oocysts due to their thick wall [42]. Therefore, it is
difficult to completely remove the Cryptosporidium oocysts from contaminated drinking
water [43]. The thick wall oocysts are sporulated and are infectious when shedding, which
can result in immediate infection of new hosts. The infectious dose of Cryptosporidium
oocysts for humans is about nine oocysts per Cryptosporidium isolate and about 50 oocysts
for calves [44,45]. However, it was reported that 1 to 10 oocysts of Cryptosporidium caused
infection for some individuals during the Milwaukee outbreak [42]. Although, one infected
host can shed up to 1010 oocysts, which results in a huge infection pressure.
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3. Pathogenesis of Cryptosporidium

After ingestion of the thick-walled oocyst with food or water by the host, many signal-
ing molecules are expressed on the sporozoite surface that mediate their attachment and
invasion to the host cells. Calcium-dependent protein kinases (CDPKs) were reported to be
involved in the regulation of the invasion process of the sporozoite to the host cell [30,47].
Furthermore, Cryptosporidium is embraced by the host cell instead of invading the host
cells. Therefore, it stays in an epicellular location and this induces tremendous actin re-
arrangement in the infected cells [30]. After attachment and invasion of Cryptosporidium,
the host–parasite interactions play an important role in pathogenesis [48]. In calves,
C. parvum causes acute to chronic catarrhal enteritis that begins in the distal ileum; however,
different Cryptosporidium developmental stages were also detected in the duodenum, colon,
and part of the cecum. The affected mucosa is hyperemic and edematous and the mesenteric
lymph nodes are partially enlarged and edematous [49]. Histologically, mild to moderate
villus atrophy associated with occasional villus fusion was observed. The affected crypts
are partially dilated and contain neutrophil granulocytes. The lamina propria mucosa also
had neutrophil granulocytes and a large mononuclear cell infiltration [50]. In the infected
host, epithelial cell degeneration, metaplasia of physiological high prismatic to isoprismatic
villus epithelial cells, hyperplastic crypt epithelium, displacement of microvilli in the area
of the intracellular parasite stages’ attachment zone, and long microvilli can be seen in the
vicinity of the parasite stage [51]. These pathological alterations result in the reduction
of the intestinal absorption surface and, consequently, malabsorption. Damage to the
intestinal epithelium may also have an impact on the activity of brush border membrane
enzymes (glucoamylase, alpha-dextrinase, saccharase, lactase), resulting in a reduction in
the small intestine’s carbohydrate digestion ability. As a result, osmotically active particles
persist in the intestinal lumen, osmotic diarrhea develops, and water resorption is impeded.
Several causes can lead to increased chloride secretion into the gut lumen, including im-
mune response to membrane injury, prostaglandins secreted by enterocytes of intra- and
sub-epithelial lymphocytes, and plasma cells and macrophages that enhance blood vessel
permeability [50].
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4. Species, Genotypes/Subtypes, and Host Spectrum of Cryptosporidium

Currently, there are more than 40 morphologically and molecular-biologically differ-
ent Cryptosporidium species [52–56], which infect mammals (Bovidae, Primates, Carnivora,
Hares, Equidae, Rabbits, Rhinocerotidae, and Tapiridae), amphibians, birds, and reptiles.
Additionally, more than 157 mammalian species were listed as hosts for Cryptosporidium
infection [57]. However, Cryptosporidium species including C. hominis, C. bovis, C. parvum,
C. ryanae, C. andersoni, C. fayeri, C. canis, C. felis, C. macropodum, C. muris, C. suis, and
C. wrairi have been isolated from mammals. C. meleagridis, C. baileyi, and C. galli have
been isolated from birds [58], while C. varanii and C. serpentis have been isolated from
reptiles and C. fragile has been isolated from amphibians (Table 1) [59]. Additionally,
C. rubeyi has been isolated from squirrels, C. scophthalmi from turbot, C. huwi from fish,
and C. erinacei from horses and hedgehogs [60]. Human cryptosporidiosis is caused by
C. hominis, while C. parvum is considered the zoonotic species of human cryptosporid-
iosis [61]. Both C. hominis and C. parvum are responsible for more than 90% of human
cryptosporidiosis. Although there is host specificity of the Cryptosporidium species, other
species such as C. meleagridis, C. baileyi, C. andersoni, C. canis, C. felis, C. bovis, C. suis, C. fayeri,
C. scrofarum, C. tyzzeri, C. erinacei, and C. muris have been detected in animal hosts as well
as in humans. The aforementioned species and C. parvum have been considered poten-
tially zoonotic species [62,63]. Additionally, humans can also be infected with C. viatorum,
C. cuniculus, C. ubiquitum, Chipmunk genotype I, Cryptosporidium horse, and Cryptosporidium
mink genotype (Table 1) [64].

Currently, there are more than 60 reported genotypes of Cryptosporidium that differ
in their molecular sequences [56,65]. Cryptosporidium subtypes are distinguished by the
number of repeats in each strand. Short, repetitive sequences (R) appear directly after the
trinucleotide repeats in some subtypes. In C. parvum, 11 subtype families (IIa- IIk) have been
discovered with at least 78 subtypes. Furthermore, in C. hominis, six subtype families have
been detected (Ia, Ib, Id, Ie, If, and Ig) with at least 78 subtypes [63,66–68]. In C. meleagridis,
seven subtype families have been identified (IIIa- IIIg), while six subtype families were
identified in C. fayeri (IVa- IVf), and two in C. cuniculus (Va, Vb), Horse genotype (VIa, VIb),
and C. tyzzeri (IXa, IXb), whereas one subtype was identified in C. erinacei (XIIIa), Mink
genotype (Xa), Ferret genotype (VIIIa), and C. wrairi (VIIa) [63]. Several highly preserved
genes, including (1) small subunit rRNA (18S rRNA), (2) Cryptosporidium oocyst wall protein
(COWP), (3) heat shock protein (HSP70), and (4) the actin gene, can differentiate between
C. parvum and C. hominis. The 18S rRNA gene is crucial because it contains multiple
conserved regions within the Cryptosporidium genus. This makes primer development
that targets most Cryptosporidium species easier. The amplification of the extracted DNA
from the oocysts can be performed using conventional or nested polymerase chain reaction
(nPCR). It is difficult to identify the mixed infections of distinct Cryptosporidium genotypes
by using PCR with 18S rRNA, COWP, HSP70, and the actin gene. On the other hand, the
GP60 gene is advantageous because the species with the highest affinity for the primer
(species-specific) will be amplified to a greater extent than the others, allowing the dominant
species to be identified alone [69]. Additionally, the 5’ end of the GP60 gene has a highly
variable area of microsatellites, which consists of trinucleotide repeats (TCA, TCG, TCT),
which all code for the amino acid serine. Amplicon next-generation sequencing (NGS),
which can identify low-abundance sequences in mixed infections, has shown that it can
identify additional Cryptosporidium gp60 subtypes in various hosts that were not identified
by Sanger sequencing [70,71]. This has important implications for tracing the zoonotic
transmission of Cryptosporidium, as Sanger sequencing may not detect zoonotic species and
subtypes that are present at low abundance and therefore incorrect conclusions regarding
zoonotic transmission may be made [72].
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Table 1. Most predominant Cryptosporidium species: major hosts, oocyst sizes and locations [18,58,73–76].

Cryptosporidium spp. Hosts Sporulated Oocyst Size (µm) Location

C. hominis Humans 4.5 × 5.5 Small intestine
C. parvum Ruminants, humans, deer 4.5 × 5.5 Small intestine

C. bovis Ruminants 4.2–4.8 × 4.8–5.4 Small intestine
C. andersoni Ruminants, camel 5.5 × 7.4 Abomasum

C. ryanae Ruminants 3.2 × 3.7 Small intestine

C. xiaoi Sheep 3.9 × 3.4 Small intestine
C. ubiquitum Sheep/wildlife 5.2 × 4.9 Small intestine

C. meleagridis Chicken, turkey, humans 4.5–5.0 × 4.6–5.2 Intestine
C. baileyi Birds 6.4 × 6.2 Cloaca, bursa, respiratory tract
C. galli Birds 8.0–8.5 × 6.2–6.4 Proventriculus

C. avium Birds 5.3–6.9 × 4.3–5.5 Intestine
C. ornithophilusis Ostrich 6.13× 5.15 Intestine
C. proventriculi Psittaciformes birds 7.4 × 5.8 Proventriculus

Avian genotype II Birds 6.0–6.5 × 4.8–6.6 Intestine
Avian genotype IV Birds 8.25 × 6.3 Intestine

Eurasian woodcock genotype Birds 8.5 × 6.4 Intestine

C. suis Pigs, humans 5.1 × 4.4 Small intestine
C. wrairi Guinea pigs 4.0–5.0 × 4.8–5.6 Small intestine

C. cuniculus Rabbits 5.9 × 5.4 Small intestine
C. canis Canids, humans, mink, fox,

coyote 5.0 × 4.7 Small intestine
C. felis Felids, humans 4.5 × 5.0 Small intestine

C. saurophilum Lizards, snakes 4.2–5.2 × 4.4–5.6 Intestinal and cloacal mucosa
C. serpentis Snakes, lizards 4.8–5.6 × 5.6–6.6 Stomach

C. fayeri Red Kangaroo, marsupials 4.9 × 4.3 Intestine
C. macropodum Marsupials 4.9 × 5.4 Small intestine

C. muris Rodents, humans 5.6 × 7.4 Stomach

C. ratti Rodents 4.5–5.4 × 4.5–5.0 Small intestine
C. tyzzeri Mice 4.6 × 4.2 Small intestine

C. molnari Fish 4.7 × 4.5 Stomach
C. scophithalmi Fish 3.0–4.7 × 3.7–5.0 Intestine

C. nasorum Fish 4.3 × 3.2 Intestine

5. Epidemiology of Cryptosporidiosis
5.1. Source of Infection and Mode of Transmission
5.1.1. In Humans

The zoonotic transmission of Cryptosporidium can take place via direct contact with
an infected person and/or consumption of contaminated drinking water or food and/or
inhalation of oocysts from contaminated air with aerosolized droplets or fomites [41,77].
Additionally, synanthropic flies (suborder: Cyclorapha) play a crucial role in the mechanical
transmission and spread of infection [78]. There are multiple factors leading to human
cryptosporidiosis [61] and the occurrence of outbreaks, such as (1) contaminated drinking
water, and unclean recreational/swimming pool water, (2) contaminated foods such as
raw fruits and vegetables that were fertilized with contaminated effluent, (3) contact with
infected people (hospitals, daycare centers, schools), (4) contact with infected animals (espe-
cially calves), and (5) anal sexual contact [42]. Even though cryptosporidiosis is primarily
a water-based illness, the risk of foodborne transmission is well known. Food contam-
ination with Cryptosporidium oocysts can occur during food (vegetables, fruits, seafood,
and meat) manufacturing, processing, and preparation. The oocysts’ resistance can help
them survive various processing procedures, such as chlorine baths and blast freezing [79].
Furthermore, washing fresh fruit may not be enough to eliminate contaminated oocysts,
which not only stick to surfaces but can also permeate leafy vegetables through stomatal
pores [80,81]. There have been fewer reported foodborne cryptosporidiosis outbreaks than
waterborne infections.
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5.1.2. In Animals

Calves usually become infected with cryptosporidiosis by ingestion of oocysts from
the contaminated environment. There are many possible sources of infection including
(1) shedding of infected neighbor animals, (2) contaminated stables, (3) dirty udders and
teats of cows, and (4) contaminated water. The subclinical infected adult cattle act as
oocysts shedders [82,83], therefore they are considered a potential reservoir for infection.
Furthermore, Cryptosporidium infection can be also transmitted by animal handling per-
sonnel through dirty shoes and clothes as well as via infected dogs, cats, rodents, wild
animals, insects (flies, cockroaches, and beetles), and free-living amoeba [84,85]. Mixed
infection of Cryptosporidium together with enterotoxin E. coli, Corona- and Rotaviruses
is considered one of the most common causes of neonatal calf diarrhea. The prevalence
of bovine cryptosporidiosis ranged between zero and 100% and the prevalence tends to
decrease with the increasing age of the animal [86]. There is variation in the tendency
of Cryptosporidium species to infect calves in an age-dependent manner. For example,
C. parvum is the most prevalent species in calves up to 8 weeks old, while C. bovis is
dominant in calves ranging between 2 to 11 months of age [87,88].

5.2. Clinical Signs and High-Risk Groups of Cryptosporidiosis
5.2.1. In Humans

Many risk factors are implicated in the zoonotic transmission of Cryptosporidium infec-
tion. These factors include contact with infected animals, age (infection rate is higher in
young animals and humans), gender (infection is higher in males compared to females),
poverty, overcrowding, season (rise of cases around rainy season), poor water quality, poor
hygiene measures, the status of the host immunity, exposure to HIV–infected people [89],
and natural disasters (storms, earth erosions, floods) [90]. The high-risk groups of people
that can be exposed to Cryptosporidium infection include: (1) children in childcare centers,
(2) childcare workers who change children’s diapers, (3) parents or attendees of infected
children, (4) the elderly (75 years and older), (5) travelers to/from endemic areas, (6) swim-
mers who swallow contaminated water, (7) people handling infected animals and birds,
(8) people who have been sexually exposed to human feces, (9) people taking care of other
people who are infected, (10) people who drink from untreated water such as backpackers,
hikers, and campers [91], (11) organ transplant recipients, and (12) other occupational
associated groups such as veterinarians, animal handlers (sweepers, vaccinators, debeaking
staff), pet owners, and hunters.

The severity of clinical signs in infected humans depends on the age and the immunity
of the infected person [92,93]. The incubation period in immunocompetent people is from 5
to 21 days, followed by acute self-limiting diarrhea that lasts 3 to 12 days. The clinical signs
range from medium to profuse watery to catarrhal diarrhea, which is often associated with
abdominal pain, nausea, vomiting, flatulence, fatigue, and anorexia. Respiratory symptoms
such as cough, sneezing, and expectoration may occur after inhalation of oocysts from
contaminated air [41,56]. Asymptomatic infection can also occur [94,95]. However, the
infection can develop into a chronic and life-threatening disease in immunocompromised
persons [95], specifically people suffering a genetic immunological malfunction such as
hyper-IgM syndrome, a significant reduction in the number of CD4-lymphocytes such as
HIV infection, or those undergoing immunosuppressive therapy after organ transplanta-
tion [96]. Cryptosporidium has been isolated from the gallbladder and the respiratory tract
of HIV/AIDS patients as well as from patients suffering from severe combined immune
deficiencies (SCID), causing cell-mediated immunity deficiency, and extra-intestinal forms
(in the ductus pancreaticus a.o. and the respiratory bronchioles) [96]. Differences in clinical
symptoms have been noted between C. parvum and C. hominis in children and HIV/AIDS
patients, with C. parvum being less virulent than C. hominis [97,98]. In HIV patients,
C. parvum infections are mostly associated with vomiting and chronic diarrhea and are
more frequent than C. hominis infections [97]. Additionally, Cryptosporidium infection at a
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young age has been linked to stunted growth and long-term cognitive problems, particu-
larly in children in developing countries [42].

5.2.2. In Livestock Animals

Cryptosporidiosis is more frequent in young calves and the severity of the disease
depends on various factors including age, infectious dose, immunity of the host, season,
geographical distribution, and mixed infection with other pathogens [99]. The clinical
signs vary from asymptomatic to pasty or watery profuse diarrhea, dehydration, and death.
Co-infections of C. parvum with enterotoxin E. coli, Coronaviruses, and Rotaviruses can
occur within the first three weeks of age and are considered one of the major causes of
mortality in calves [1,94]. Neonatal diarrhea with a single or mixed C. parvum infection is
characterized by yellowish, profuse diarrhea and is associated with complications such as
exsiccosis, metabolic acidosis, and loss of electrolytes [50,100]. Consequently, cryptosporid-
iosis results in severe economic losses due to morbidity, growth retardation, and treatment
costs [101,102]. The prevalence of Cryptosporidium in animals varies according to the geo-
graphical area, animal species, rearing forms, and the diagnostic tests. For example, the
prevalence reached up to 100% in goats and horses in South America and sheep in Europe.
Additionally, the highest prevalence of infection in buffalo was reported in Africa (52.0%)
and Asia (50%) compared to other continents. The highest prevalence (more than 50%) in
cattle was reported in all the continents except South America. The highest prevalence in
pigs was reported in Asia (55.8%) (Table 2).

Table 2. Cryptosporidium prevalence in livestock animals in different continents [99,103,104].

Continents Animal Species Diagnostic Test * Prevalence Range

South America Buffalo CM, PCR 9.4–48.2%
Cattle CM, ICT, PCR 3.0–56.1%
Goat CM 4.8–100%

Sheep CM, PCR 0.0–25.0%
Pig CM, PCR 0.0–2.2%

Horse CM 0.0–100%
Calves CM, ELISA, PCR 84.2%

North America Cattle CM, IFA, PCR 1.1–78.0%
Goat CM 20.0–72.5%

Sheep CM, IFA, PCR 20.0–77.4%
Pig CM, IFA 2.8–19.6%

Horse CM, IFA, PCR 0.0–17.0%

Africa Buffalo CM, PCR 1.3–52.0%
Cattle CM, ELISA, PCR 0.5–86.7%
Goat CM, ELISA 0.0–76.5%

Sheep CM, ELISA, PCR 1.3–41.8%
Pig CM, ELISA, IFA, PCR 13.9–44.9%

Horse CM, PCR 0.0–2.9%

Asia Buffalo CM, ICT, PCR 3.6–50.0%
Cattle CM, ICT, IFA, PCR 1.5–93.0%
Goat CM, ICT, IFA 0.0–42.9%

Sheep CM, ELISA, ICT, PCR 1.8–66.6%
Pig CM, IFA, PCR 0.4–55.8%

Horse CM, PCR 2.7–37.0%

Europe Buffalo ELISA 14.7%
Cattle CM, ELISA, ICT, IFA, PCR, QLAT 0.0–71.7%
Goat CM, ELISA, IFA 0.0–93.0%

Sheep CM, IFA, ELISA 1.4–100%
Pig CM, IFA, PCR 0.1–40.9%

Horse CM, ELISA, IFA, PCR 3.4–25.0%

Australia Buffalo PCR 13.1–30.0%
Cattle CM, IFA, PCR 3.6–73.5%
Goat PCR 4.4%

Sheep PCR 2.2–81.3%
Pig CM, PCR 0.3–22.1%

* CM, conventional microscopy; IFA, immunofluorescence antibody test; ELISA, enzyme-linked immunosorbent
assay; ICT, immunochromatographic test; QLAT, quantitative latex agglutination; and PCR, polymerase chain
reaction. The reported prevalence range was summarized from different research articles.
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5.2.3. In Poultry

Several Cryptosporidium species can infect birds, including C. meleagridis, C. galli, and
C. baileyi [58]. These species have different predilection sites. For example, C. meleagridis
and C. baileyi can develop in the small and large intestines as well as the bursa of Fabricius,
causing different degrees of enteritis. C. galli was reported to infect finches, chickens,
and grosbeaks and infect only the proventriculus, while C. meleagridis was reported to
infect turkeys and parrots. C. baileyi is the most common avian Cryptosporidium that can
infect chickens, turkeys, cockatiels, quails, ostriches, and ducks [105]. Cryptosporidium
species can also multiply in the tissues of the respiratory tract of the infected birds. Ad-
ditionally, it causes enteritis and renal disease, due to inflammation of Fabricius’ bursa
and kidneys [105,106]. There are approximately 11 Cryptosporidium genotypes that have
been detected from more than 30 bird species, including avian I–V, duck genotype, goose
genotypes I–IV, and the Eurasian Woodcock genotype [76]. However, Cryptosporidium avian
genotype III has been associated with chronic vomiting in peach-faced lovebirds (Agapornis
roseicollis) [107]. Cryptosporidium species such as C. hominis, C. parvum, and muskrat geno-
type have also been isolated from Canada geese (Branta canadensis) [108–110]. Recently,
C. ornithophilusis was isolated from farmed ostrich in the Czech Republic [74], while
C. avium was isolated from red-crowned parakeets [75]. The prevalence of Cryptosporidium
has been investigated in different species of poultry worldwide. The prevalence ranged
between 0.8% in pigeons to 50% in broilers and layers (Table 3). The most detected
Cryptosporidium species were C. baileyi, C. meleagridis, C. galli, and C. parvum. In some
countries, scientists have also been able to isolate other species such as C. avium from China,
C. muris from China and Australia, and C. andersoni from Australia (Table 3).

Table 3. Prevalence of Cryptosporidium species of birds in different countries.

Country Species/Genotype Host Prevalence Reference

Brazil C. meleagridis, C. baileyi Chicken, turkey, quail 14.8% [111]
Brazil C. baileyi, C. parvum, C. meleagridis Chickens 12.6% [112]
China C. baileyi Chickens 2.4% [113]
Iraq C. baileyi, C. parvum, C.galli,

C. meliagredis Broilers, layers 50% [114]
Iraq C. parvum and C. baileyi Wild pigeons 6.0% [115]
Iran C. parvum and C. baileyi Broilers 8.0% [116]

China C. parvum and C. baileyi Wild birds 8.9% [117]
Bangladesh C. baileyi, C. meleagridis, C. parvum Layers, broilers, pigeons 15.7% [118]

China C. avium, C. baileyi, C. galli,
C. meleagridis Chickens 13.7% [119]

Germany C. parvum, C. baileyi Turkey, broilers, layers 7.0% [58]
Spain C. meleagridis, C. parvum Wild birds 8.3% [120]
China C. baileyi, C. meleagridis Pigeons 0.8% [121]

Czech Republic C. baileyi, C. meleagridis Red-legged partridge 22% [122]

China Avian genotype II, C. baileyi,
C. meleagridis Chickens 9.9% [123]

China C. baileyi, C. muris Ostrich 10.2% [123]
Vietnam Avian genotype II Ostrich 23.7% [124]
Algeria C. baileyi, C. meleagridis Broilers 9–69.0% [125]
Algeria C. meleagridis Turkey 43.9% [126]
China C. baileyi, C. meleagridis Japanese quail 13.1% [127]
China C. galli, C. meleagridis, C. baileyi, C. parvum,

Avian genotypes I, II, III, V Pet birds 8.1% [128]

Brazil C. baileyi, Avian genotype II,
C. galli Wild birds 6.6% [129]

China C. baileyi Ostrich 11.7% [130]
China C. baileyi Pekin ducks 16.6% [131]
China C. baileyi, C. meleagridis Chickens 8.9% [131]
USA C. parvum Turkey 6.3% [132]

Brazil C. baileyi, Avian genotypes I, II, III, C. galli,
C. meleagridis, C. parvum Captive birds 4.9% [133]

Australia
Avian genotypes I, II, III,

C. andersoni, C. baileyi, C. galli,
C. muris

Several avian species 6.3% [134]

5.3. Outbreaks of Cryptosporidiosis in Humans

The first waterborne cryptosporidiosis outbreak was reported in 1993 in Milwaukee,
Wisconsin (USA), with an estimated 403,000 people affected, 4400 hospitalizations, and
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more than 100 deaths [11–13]. The CDC reported a doubled increase in the number of
Cryptosporidium-associated waterborne outbreaks from 2014 to 2017 [14]. Between 2009
and 2017, there were more than 444 reported outbreaks in the USA [2]. The number of
outbreaks reported has increased by an average of 13% annually. These outbreaks have
resulted in 7465 infected cases with 287 hospitalizations and 1 death. Out of these outbreaks,
156 outbreaks resulted in 4232 cases and 183 hospitalizations and were associated with
exposure to Cryptosporidium in pools or waterparks. Among these outbreaks, 14.6% were
linked to contact with cattle, and 12.8% were linked to contact with infected persons in
childcare settings. Among the 22 foodborne outbreaks, 40.9% were linked to unpasteurized
milk and 18.2% were linked to unpasteurized apple cider. However, the mode of trans-
mission was unknown for 14.2% of the outbreaks [2]. Interestingly, salad consumption
was incriminated in 35% of cases [9]. Between 2010 and 2020, most of the waterborne
outbreaks were caused by C. hominis (72%), while the majority of foodborne outbreaks were
caused by C. parvum (96.5%; Table 4) worldwide [135]. Interestingly, most of the reported
waterborne outbreaks were linked to swimming pools, whereas most foodborne outbreaks
were linked to unpasteurized raw milk and eating salad. During these outbreaks, the most
predominant identified C. hominis subtype was IfA12G1 in the USA, IbA10G2 in the UK,
Sweden, and Australia, and IbA9G2 in French Guiana and Germany. Over the last 10 years,
C. hominis subtype IfA12G1 was responsible for approximately 50% of C. hominis-related
waterborne outbreaks in the USA. Furthermore, the most predominant identified C. parvum
subtype was IIaA15G2R1 in the USA and UK, and IIaA19G1R1 in Norway (Table 4). The
majority (64.3%) of foodborne outbreaks caused by C. parvum were due to IIa and only
35.7% were due to IId subtypes, which are common in livestock, suggesting its important
role in foodborne outbreaks [136].
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Table 4. Recent reported outbreaks of human cryptosporidiosis [135].

Country Year No. of Cases Species/Subtype Source No. of Outbreaks References

USA

2017 41 C. hominis IfA12G1 and IaA15R3 Swimming pool 3 [137]
2016 1373 C. hominis IbA10G2 and IfA12G1, and C. parvum IIaA17G1R1

and IIaA15G2R1 Swimming pool and water park 16 [137]
2016 10 C. parvum IIaA15G2R1 and IIaA18G3R1 Raw cow milk 2 [137,138]
2015 55 C. hominis IfA12G1 Swimming pool 1 [139]
2015 103 C. parvum IIaA17G2R2 Raw milk 1 [137]
2014 68 C. hominis IdA17and IfA12G1 Swimming pool, water slide, and fountain 4 [137]
2014 11 C. parvum IIaA16G3R1 Unpasteurized goat milk 1 [140]
2013 67 C. hominis IaA28R4 and IfA12G1, and C. parvum

(unknown subtype) Swimming pool, lake, water park, and fountain 6 [137]
2013 172 C. parvum IIaA15G2R1 and C. parvum (unknown subtype) Drinking water 3 [137]
2013 21 C. parvum IIaA17G2R1 and C. hominis (unknown subtype) Unknown 3 [137]
2012 182 C. hominis IbA10G2, and C. parvum IIaA16G3R1, IIaA15G2R1,

and IIaA16G2R2 Lake, fountain, water park, and swimming pool 9 [137]
2011 44 C. hominis IaA15R3 and IaA28R4 Water park and swimming pool 2 [137]
2010 162 C. hominis IaA24R4, IaA28R4, IbA10G2 and IdA15G1 Splashpad, lake, water park, and swimming pool 4 [137]

UK

2017 43 C. hominis IbA10G2 and IbA12G3 Swimming pool 2 [141]
2016 111 C. hominis IbA10G2 and IdA16, and C. parvum

(unknown subtype) Swimming pool 10 [141]

2015 83 C. hominis IbA10G2 and IaA14R3, and C. parvum IIaA15G2R1
and IIaA26G1R1 Swimming pool and hydrotherapy pool 11 [141]

2015 424 C. parvum IIdA24G1 Salad 1 [135]
2014 109 C. hominis IaA14R3, IaA20R3, IbA10G2 and IdA25, and

C. parvum IIaA15G2R1 and IIdA17G1 Swimming pool and hydrotherapy pool 11 [141]
2014 12 C. parvum IIaA15G2R1 Drinking water 1 [141]
2013 94 C. hominis IbA10G2 and IA14R3 Swimming pool and paddling pool 5 [141]
2013 23 C. hominis IbA10G2 and IdA18 Public drinking water supply 1 [141]
2013 11 C. parvum IIaA15G1R1 Unpasteurization dairy milk [141]
2012 176 C. hominis IbA10G2 and C. hominis (unknown subtype) Swimming pool and hydrotherapy pool 10 [141]
2012 648 C. parvum IIaA15G2R1 Pre-cut mixed salad leaves 1 [142]
2011 21 C. hominis IbA10G2 and C. hominis (unknown subtype) Swimming pool 1 [141]
2010 78 C. hominis (unknown subtype) Swimming pool 2 [143,144]

Sweden

2019 122 C. parvum IIdA22G1c Spinach in vegetable juice 1 [145]
2011 872 + 730 C. hominis Public drinking water source 2 [146]
2010 27,000 C. hominis IbA10G2 Public drinking water source 1 [147]
2010 16 + 89 C. parvum IIdA20G1e and C. parvum IIdA24G1 Salad garnish on chanterelle sauce 2 [148]

French Guiana 2014 12 C. hominis IbA9G2, IbA10G2, IbA15G1 Playing and bathing in a river 1 [149]

Germany 2013 167 C. hominis IbA9G2 Playing and bathing in a river 1 [150]

Ireland 2012 12 C. parvum IIaA20G3R1 Public drinking water supply 1 [151]

Norway 2018 6 C. parvum IIaA14G1R1 Apple juice 1 [152]
2012 145 C. parvum IIaA19G1R1 Goat kids and lambs 1 [153]

Finland 2012 >250 C. parvum IIdA17G1 Salad 5 [154]

South Korea 2012 126 C. parvum (unknown subtype) Tap water from the underground water tank 1 [155]

Australia 2012 18 C. hominis IbA10G2 Swimming pool 1 [156]

Canada 2010 12 C. hominis (unknown subtype) Recreational water park 1 [3]
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6. Diagnosis of Cryptosporidium

There are several methods used for the detection of Cryptosporidium directly in fecal
samples, including microscopy detection of the oocysts either by using flotation or sedimen-
tation techniques to determine the number of oocysts in the stool [33]. The oocyst detection
limit using a microscope has been recorded as low as 50,000 to 500,000 oocysts per gram of
feces. Direct detection of Cryptosporidium oocysts is usually done by microscopy without
any staining and/or by the modified Ziehl–Neelsen stain, where the oocysts are stained pur-
ple with a blue background. Fecal smears can be also tested microscopically after staining
with the Heine technique or Kinyoun’s Carbol fuchsin staining technique [157]. Addition-
ally, the immunofluorescent antibody-based (IFA) staining techniques using monoclonal
antibodies against the oocyst wall antigen are also widely used. These are characterized
by high sensitivity and are cheaper compared to other traditional staining methods [73].
In general, the parasitological methods for Cryptosporidium detection do not differentiate
between viable and non-viable oocysts.

Serological methods are considered the best tools for the screening of large numbers
of samples, particularly in epidemiological surveys. The serological tests include enzyme-
linked immunosorbent assays (ELISA) and enzyme-linked immunoelectron transfer blots
(EITB; Western blot). The enzyme immunoassay (EIA) methods have many advantages
as they are faster, easy to perform, inexpensive, and more sensitive compared to the
immunofluorescence methods [33]. Rapid immunochromatographic (strip) tests can also
be used [158,159] as they are used for the detection of the oocyst cell wall proteins using
monoclonal antibodies [160].

The molecular diagnosis of Cryptosporidium using nucleic acid detection techniques can
differentiate between viable and non-viable oocysts [161]. They can also identify species,
genotypes, and subtypes, which is crucial for detecting Cryptosporidium prevalence and
transmission routes. [162]. Molecular methods include random amplified polymorphic
DNA PCR (RAPD-PCR), single-round and nested PCR, reverse transcription PCR (RT-PCR),
arbitrary primed PCR (AP-PCR), single-strand conformation polymorphism (SSCP) analy-
sis, crypto PMA-PCR, real-time PCR followed by restriction fragment length polymorphism
(RFLP) analysis, melting curve analysis, microarray, and DNA sequencing [163]. These
PCR-based methods are more sensitive than conventional microscopical and serological
methods and are considered a gold standard [158]. Molecular techniques are very popular
as they are used for the differentiation and genotyping of C. parvum and C. hominis [164].
Molecular diagnosis can detect the target genes of Cryptosporidium such as 18S rRNA,
COWP, HSP70, and the actin gene. The 18S rRNA gene-specific PCR is extremely useful
for detecting a conserved area in the gene or distinguishing between Cryptosporidium spp.
(targeted nucleotide segments with varied nucleotide sequences) [33,165]. Furthermore,
restriction enzymes are employed to differentiate species by digesting amplicons into
fragments of varying sizes based on the species, causing the products to migrate at dif-
ferent distances on the gel [166]. Gene sequencing can also be used to identify various
Cryptosporidium species by using pure DNA that has been amplified using internal primers
and tagged with colored nucleotide bases that emit light at different wavelengths [167].
Using the Basic Local Alignment Search Tool, the generated forward and reverse sequences
can be assembled into contigs and compared to sequences deposited in the Gene Bank.
The dominant species or species with a strong affinity for the primers will be amplified
to a greater extent than others, making it difficult to identify the mixed infection using
PCR. At gene sequencing, amplification of more than one species manifests itself as multi-
ple peaks in many sites and has difficulty assembling contigs. A combination of various
species/genotype-specific primers or cloning of single amplicons produced in the area
is required for the successful analysis of mixed infection [168]. Another possibility is to
use species-specific primers to undertake GP60 subtype analysis. This GP60 gene is tar-
geted for neutralizing antibodies and is expressed on the apical surface of invading stages
(sporozoites and merozoites) [169]. GP60 subtyping can also help in the determination of
virulence of different C. parvum and C. hominis subtypes [170].
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7. Prevention and Treatment of Cryptosporidium Infection
7.1. One Health Approach for the Control of Cryptosporidiosis

The “One Health” approach is a worldwide strategy that is used to mitigate zoonotic
diseases and improve health by preventing infection occurrence at the human–animal–
environment interface. Collaboration between all health sectors (veterinarians, occupa-
tional health physicians, and public health operators) can help in infection control by
enhancing the educational system, status of thinking, legislation, and administrative struc-
tures [171]. The One Health approach has been previously proposed to tackle cryptosporid-
iosis as well as other zoonotic diseases [171–173], since there is a critical need for close
One-Health-oriented interactions among professionals working in diverse fields such as
physicians, veterinarians, diagnosticians, epidemiologists, public health experts, ecologists,
economists, social scientists, governments, decision-makers, and pharmaceutical industries.
In this review, we propose using the One Health approach as prophylactic prevention
for Cryptosporidium infection in humans, animals, and the environment through under-
standing the disease pathogenesis, life cycle, genomics, epidemiology, previous outbreaks,
source and transmission dynamics, host spectrum, risk factors, high-risk groups, disease
in animals and humans, diagnosis, treatment and control, and the prospect of effective
anti-Cryptosporidium vaccines. The One Health approach includes (1) increasing public
health awareness about cryptosporidiosis and its ways of transmission, (2) breaking the
parasite’s transmission cycle, (3) epidemiological investigations to identify risk factors,
(4) establishing regular surveillance, (5) treating the infected animals to decrease outbreaks
in humans, and (6) training the medical and veterinary specialists on the management and
diagnosis of the disease and hiring of professional, well-trained personnel.

7.2. Preventive Measures for Cryptosporidium Infection

Due to the absence of effective treatment, the prevention of cryptosporidiosis relies
mainly on the elimination and/or reduction of contamination of the environment with
infectious oocysts [33]. It is recommended to move animals to clean and dry places and
disinfect the contaminated areas, however, this is mostly not applicable on farms with a
large number of animals. For humans, continuous disinfection of the contaminated areas
will reduce person-to-person transmission in institutional and domestic settings. In general,
the infectivity of the oocyst and its survival time will be restored at low temperatures
(less than 5 ◦C) and increased by temperatures higher than 15 ◦C for 3 months [174]. In
general, several physical stresses can affect Cryptosporidium oocysts including irradiation,
heat, cold, pressure, and desiccation [19]. The infectivity of C. parvum oocysts at different
temperatures is due to the carbohydrate energy reserve of the sporozoites, and the residual
bodies including amylopectin (which helps in the excavation process and the host–cell
invasion) granules which are used quickly at higher temperatures [33,175]. Increasing
the temperature to 64.2 ◦C or more for 5 min and 72.4 ◦C for 1 min renders the oocysts
non-infectious [176]. Even in the presence of cryoprotectants, C. parvum oocysts can survive
at −20 ◦C for prolonged periods, but not at −70 ◦C or below [176]. However, ultraviolet
(UV) irradiation can render Cryptosporidium oocysts non-infectious [177]. The most effec-
tive disinfectants against Cryptosporidium oocysts are those that contain chlorine dioxide,
hydrogen peroxide, or ammonia. Although high concentrations and longer exposure to
chlorine-, bromine-, and iodine-related compounds can decrease the infectivity of the
oocysts, they are limiting their practical applications. Ozone is one of the most effective
chemical disinfectants against Cryptosporidium and can be used against Cryptosporidium
oocysts in water [33]. It has also been reported that rotifers, which occupy rivers, lakes,
seawater, and ponds, and predacious protozoa, can ingest oocysts of C. parvum [178].
Some rotifers were found to discharge oocysts in boluses containing a mixture of other
eaten components [179], and therefore they can be used for Cryptosporidium oocyst control
in water.
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7.3. Treatment of Cryptosporidium Infection

Several active compounds have been tested for their efficacy against Cryptosporidium
infections [23]. There are only a few drugs that possess efficacy in vitro [23,180–182].
Halofuginone (a bromo-chlorinated quinazoline derivate) is approved for pro- and meta-
phylactic treatment for animals in Europe. Halofuginone is applied for 7 days at a dose of
100 µg/kg of body weight, starting from the first 24 h after the onset of diarrhea and/or
within the first 24–48 h of life as prophylactic. However, symptoms of poisoning include
diarrhea, blood in feces, reduction of milk intake, dehydration, exhaustion, and apathy,
which can be observed after using a double therapeutic dosage [24]. Furthermore, nitazox-
anide (a nitrothiazolylsalicylamide) was approved by the Food and Drug Administration
(FDA) for the treatment of cryptosporidiosis in humans ≥ 1 year of age [183]. Nitazox-
anide is an oral suspension that is mostly used at a concentration of 100 mg/5 mL for
patients ≥ 1 year of age, while tablets at 500 mg for patients ≥ 12 years of age are used for
the treatment [91]. Interestingly, approximately 56% of the 71 Cryptosporidium outbreaks
were associated with drinking contaminated water [10]. Therefore, control of Cryptosporid-
ium is a major challenge for water treatment professionals. Cryptosporidium oocysts can
pass through different types of filters and are not affected by chlorine and chlorine-based
disinfectant. Different filtration methods such as direct filtration, conventional filtration,
slow-sand filtration, diatomaceous earth filtration, bag filtration cartridge filtration, and
membrane filtration are used in the treatment of infected water. The conventional filtration
methods using coagulation, flocculation, and sedimentation are capable of the removal
of 99% of Cryptosporidium [33]. Sand filtration also uses a biological process to remove
Cryptosporidium oocysts from the water supply. UV irradiation can also affect the infectivity
of Cryptosporidium oocysts [184,185], suggesting the efficacy of sunlight in the inactivation
of oocysts in environmental water reservoirs [73].

7.4. Vaccines Development

Currently, there are no available vaccines to control Cryptosporidium infection in hu-
mans and animals [173]. There is a critical need to develop vaccines, particularly for high-
risk groups such as young children, malnourished populations, and immunosuppressed
persons. It has been reported that vaccinating mother cows against other diarrhea-causing
pathogens such as rotavirus, coronavirus, and E. coli may protect against Cryptosporidium
infection in calves via colostrum, thus helping the calf to resist the infection during the first
weeks of age [186]. To develop an effective vaccine, there is a need to understand the host
immune response to infection and the host–parasite interactions [187] as well as understand
the innate and adaptive host response [188]. However, the nature of these responses is
still unknown and needs further investigation [189,190]. Several trials to produce effective
vaccines against cryptosporidiosis have been carried out. It was reported that miRNA plays
a crucial role in the protection of the host cell against Cryptosporidium and the regulation of
miRNA expression levels in epithelial cells [191], while mannose-binding lectin (MBL) can
protect against cryptosporidiosis, especially in children and immunocompromised persons
with MBL deficiency [192–194]. Additionally, several antigens such as gp15, cp15, and cp23
are being developed as vaccine candidates. The gp15 antigen is substantially conserved
between C. parvum and C. hominis, and there is a significant cross-reactivity between both
species [195], while cp23 is conserved among C. parvum isolates and found in both the sporo-
zoites and merozoites [187]. Using the cp15 vaccines to immunize pregnant goats protect
offspring [196]. The vaccines provide a transient reduction of Cryptosporidium in the stool of
vaccinated goats, but they were not fully protected against the infection [197]. Interestingly,
the vaccine that contains multiple dominant antigens may enhance protection against the
infection. For example, it was reported that cp23 plus cp15 divalent vaccine prolonged the
prepatent period and reduced the shedding of the oocyst compared to vaccination with cp23
alone in mice [198]. Furthermore, serum antibodies to both cp23 and gp15 protected diarrhea
in immunocompetent persons infected with Cryptosporidium [199,200]. Collectively, the
ideal vaccine should (1) provide lifelong immunity in the vaccinated population, (2) protect
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against species and subtypes of Cryptosporidium to assure cross-protection against the most
common species infecting humans, and (3) prevent Cryptosporidium transmission [187,189].

8. Conclusions and Future Perspectives

Cryptosporidium is one of the water- and foodborne pathogens with socioeconomic and
public health importance worldwide. The infection is characterized by high morbidity and
high mortality. Cryptosporidium infection is ubiquitous and has a high prevalence in animals
and humans. Children under 5 years of age and immunocompromised individuals are
the most susceptible groups to infections. Cryptosporidiosis in animals has become more
common because of environmental contamination in livestock production. Cryptosporidium
infection can be transmitted directly via drinking/ingestion of contaminated water or food
with sporulated oocysts. Most of the foodborne outbreaks associated with Cryptosporidium
are zoonotic. To prevent disease outbreaks, routine surveillance systems and the application
of the One Health approach are required. Food safety and water sanitation are required to
prevent and/or reduce future outbreaks worldwide. Each of the available diagnostic tools
has its limitations in terms of isolation, detection of co-infections with other pathogens,
and cost. In developing countries, the true burden of cryptosporidiosis is underestimated
and underreported due to the limitation of diagnostic tools, which results in ineffective
clinical and public health management of the disease. Therefore, there is a critical need
to develop rapid, reliable, and cost-effective diagnostic tests to improve the detection,
reporting, and interpretation of results. Cryptosporidium infection prevention and control
can be achieved via understanding the sources of the infection (humans and animals),
the routes of transmission, the oocyst survival in the environment, and the risk factors.
Currently, no effective drugs or vaccines are available to treat and/or prevent infection in
animals and humans. There is also a critical need for further studies for the development
of effective vaccines. Additionally, more research is needed to develop highly effective
disinfection methods for treating Cryptosporidium-contaminated swimming pools and
water supplies.
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