74 research outputs found

    Correlation between radiation processes in silicon and long-time degradation of detectors for high energy physics experiments

    Get PDF
    In this contribution, the correlation between fundamental interaction processes induced by radiation in silicon and observable effects which limit the use of silicon detectors in high energy physics experiments is investigated in the frame of a phenomenological model which includes: generation of primary defects at irradiation starting from elementary interactions in silicon; kinetics of defects, effects at the p-n junction detector level. The effects due to irradiating particles (pions, protons, neutrons), to their flux, to the anisotropy of the threshold energy in silicon, to the impurity concentrations and resistivity of the starting material are investigated as time, fluence and temperature dependences of detector characteristics. The expected degradation of the electrical parameters of detectors in the complex hadron background fields at LHC & SLHC are predicted.Comment: prepared for the 10th International Symposium on Radiation Physics, 17-22 September, 2006, Coimbra, Portuga

    Unprecedented Scissor Effect of Macromolecular Cross-linkers on the Glass Transition Temperature of Poly(N-vinylimidazole), Crystallinity Suppression of Poly(tetrahydrofuran) and Molecular Mobility by Solid State NMR in Poly(N-vinylimidazole)-l-poly(tetrahydrofuran) Conetworks

    Get PDF
    Unexpected correlations have been found between structural parameters and glass transition temperatures (Tg) of poly(N-vinylimidazole) (PVIm) and crystallinity of poly(tetrahydrofuran) (PTHF) in a series of novel, unique PVIm-l-PTHF amphiphilic conetworks synthesized in broad composition ranges via free radical copolymerisation of VIm and semicrystalline, methacrylate-telechelic PTHF macromolecular cross-linkers with varying Mn from 2170 to 10 000 g mol−1. Differential scanning calorimetry (DSC) investigations revealed microphase separation between the covalently bonded PVIm and PTHF components, that is two distinct Tgs corresponding to the respective polymers (PVIm and PTHF) were obtained in these optically clear, transparent materials. Complete microphase separation, i.e. absence of mixed phases, was also confirmed by solid state NMR measurements. The Tg of the PVIm phase significantly decreases with increasing PTHF content, and Fox–Flory type correlation was surprisingly found between the Tg of PVIm and its Mc (average molecular weight between cross-links). This striking finding indicates a unique, unpredicted scissor effect of the macromolecular PTHF cross-linker in these materials, i.e. with respect to glass transition, PVIm behaves as individual chains between cross-links. The molecular mobility in the PVIm chain segments obtained by solid state NMR investigations shows a similar trend as a function of Mc. In the DSC thermograms, the semicrystalline PTHF has a sharp endothermic melting peak (Tm) indicating partial crystallisation of this polymer. It was found that the Tm and the crystalline fraction (Xc) of the PTHF phase are suppressed by even a minimal content of PVIm phase in the conetworks. Even complete diminishing of Xc occurs in conetworks with lower than 40 wt% PTHF of the lowest Mn (2170 g mol−1). Unexpectedly, Tm linearly decreases with Mc in conetworks with constant Mn of PTHF. These data indicate that the decrease of both Tm and Xc of PTHF is not only composition dependent, but the MW of the macromolecular PTHF cross-linker and the Mc of the PVIm component also have effects on these parameters. These results also indicate that chemical bonding of polymer chains in conetworks yields novel materials with unprecedented property variation. This provides unique opportunities for fine tuning of the investigated fundamental material properties, i.e. Tg, Tm and Xc, within certain ranges in the novel PVIm-l-PTHF amphiphilic conetworks by selecting the proper synthesis parameters, that is, composition and MW of the telechelic PTHF macromonomer cross-linker

    Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly(N‑isopropylacrylamide) and Polyisobutylene

    Get PDF
    Novel amphiphilic conetworks (APCN) consisting of thermoresponsive poly(N-isoproplyacrylamide) (PNiPAAm) cross-linked by hydrophobic methacrylate-telechelic polyisobutylene (MA-PIB-MA) were successfully synthesized in a broad composition range. The resulting PNiPAAm-l-PIB conetworks (“l” stands for “linked by”) were obtained by radical copolymerization of NiPAAm with MA-PIB-MA in tetrahydrofuran, a cosolvent for all the components. Low amounts of extractables substantiated efficient network formation. The composition dependent two glass transition temperatures (Tg) by DSC analysis indicate microphase separation of the cross-linked components without mixed phases. It was found that the PNiPAAm-l-PIB conetworks are uniformly swellable in both water and n-hexane; i.e., these new materials behave either as hydrogels or as hydrophobic gels in aqueous or nonpolar media, respectively. The uniform swelling in both polar and nonpolar solutes indicates cocontinuous (bicontinuous) phase morphology. The equilibrium swelling degrees (R) depend on composition, that is, the higher the PIB content, the lower the R in water and the higher in n-hexane. The PNiPAAm phase keeps its thermoresponsive behavior in the conetworks as shown by significant decrease of the swelling degree in water between 20 and 35 °C. The lower critical solubility temperature (LCST) values determined by DSC are found to decrease from 34.1 °C (for the pure PNiPAAm homopolymer) to the range of 25–28 °C in the conetworks, and the extent of the LCST decrease is proportional with the PIB content. Deswelling-swelling, i.e., heating–cooling, cycle indicates insignificant hysteresis in these new thermoresponsive materials. This indicates that PNiPAAm-l-PIB conetworks with predetermined and thermoresponsive swelling behavior can be designed and utilized in several advanced applications on the basis of results obtained in the course of this study
    corecore