119 research outputs found
Effective field theory of 3He
3He and the triton are studied as three-body bound states in the effective
field theory without pions. We study 3He using the set of integral equations
developed by Kok et al. which includes the full off-shell T-matrix for the
Coulomb interaction between the protons. To leading order, the theory contains:
two-body contact interactions whose renormalized strengths are set by the NN
scattering lengths, the Coulomb potential, and a three-body contact
interaction. We solve the three coupled integral equations with a sharp
momentum cutoff, Lambda, and find that a three-body interaction is required in
3He at leading order, as in the triton. It also exhibits the same limit-cycle
behavior as a function of Lambda, showing that the Efimov effect remains in the
presence of the Coulomb interaction. We also obtain the difference between the
strengths of the three-body forces in 3He and the triton.Comment: 18 pages, 6 figures; further discussion and references adde
The Long and Short of Nuclear Effective Field Theory Expansions
Nonperturbative effective field theory calculations for NN scattering seem to
break down at rather low momenta. By examining several toy models, we clarify
how effective field theory expansions can in general be used to properly
separate long- and short-range effects. We find that one-pion exchange has a
large effect on the scattering phase shift near poles in the amplitude, but
otherwise can be treated perturbatively. Analysis of a toy model that
reproduces 1S0 NN scattering data rather well suggests that failures of
effective field theories for momenta above the pion mass can be due to
short-range physics rather than the treatment of pion exchange. We discuss the
implications this has for extending the applicability of effective field
theories.Comment: 22 pages, 9 figures, references corrected, minor modification
Scattering theory for arbitrary potentials
The fundamental quantities of potential scattering theory are generalized to
accommodate long-range interactions. New definitions for the scattering
amplitude and wave operators valid for arbitrary interactions including
potentials with a Coulomb tail are presented. It is shown that for the Coulomb
potential the generalized amplitude gives the physical on-shell amplitude
without recourse to a renormalization procedure.Comment: To be published in Phys Rev
Scattering theory with the Coulomb potential
Basic features of a new surface-integral formulation of scattering theory are outlined. This formulation is valid for both short-range and Coulombic long-range interactions. New general definitions for the potential scattering amplitude are given. For the Coulombic potentials the generalized amplitude gives the physical on-shell amplitude without recourse to a renormalization procedure. New post and prior forms for the amplitudes of breakup, direct and rearrangement scattering in a Coulomb three-body system are presented
Effective theories of scattering with an attractive inverse-square potential and the three-body problem
A distorted-wave version of the renormalisation group is applied to
scattering by an inverse-square potential and to three-body systems. In
attractive three-body systems, the short-distance wave function satisfies a
Schroedinger equation with an attractive inverse-square potential, as shown by
Efimov. The resulting oscillatory behaviour controls the renormalisation of the
three-body interactions, with the renormalisation-group flow tending to a limit
cycle as the cut-off is lowered. The approach used here leads to single-valued
potentials with discontinuities as the bound states are cut off. The
perturbations around the cycle start with a marginal term whose effect is
simply to change the phase of the short-distance oscillations, or the
self-adjoint extension of the singular Hamiltonian. The full power counting in
terms of the energy and two-body scattering length is constructed for
short-range three-body forces.Comment: 19 pages (RevTeX), 2 figure
Deconstructing 1S0 nucleon-nucleon scattering
A distorted-wave method is used to analyse nucleon-nucleon scattering in the
1S0 channel. Effects of one-pion exchange are removed from the empirical phase
shift to all orders by using a modified effective-range expansion. Two-pion
exchange is then subtracted in the distorted-wave Born approximation, with
matrix elements taken between scattering waves for the one-pion exchange
potential. The residual short-range interaction shows a very rapid energy
dependence for kinetic energies above about 100 MeV, suggesting that the
breakdown scale of the corresponding effective theory is only 270MeV. This may
signal the need to include the Delta resonance as an explicit degree of freedom
in order to describe scattering at these energies. An alternative strategy of
keeping the cutoff finite to reduce large, but finite, contributions from the
long-range forces is also discussed.Comment: 10 pages, 2 figures (introduction revised, references added; version
to appear in EPJA
An international parentage and identification panel for the domestic cat (Felis catus)
Seventeen commercial and research laboratories participated in two comparison tests under the auspices of the International Society for Animal Genetics to develop an internationally tested, microsatellite-based parentage and identification panel for the domestic cat (Felis catus). Genetic marker selection was based on the polymorphism information content and allele ranges from seven random-bred populations (n = 261) from the USA, Europe and Brazil and eight breeds (n = 200) from the USA. Nineteen microsatellite markers were included in the comparison test and genotyped across the samples. Based on robustness and efficiency, nine autosomal microsatellite markers were ultimately selected as a single multiplex âcoreâ panel for cat identification and parentage testing. Most markers contained dinucleotide repeats. In addition to the autosomal markers, the panel included two gender-specific markers, amelogenin and zinc-finger XY, which produced genotypes for both the X and Y chromosomes. This international cat parentage and identification panel has a power of exclusion comparable to panels used in other species, ranging from 90.08% to 99.79% across breeds and 99.47% to 99.87% in random-bred cat populations
Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data
The pi-N s-wave scattering lengths have been inferred from a joint analysis
of the pionic hydrogen and the pionic deuterium x-ray data using a
non-relativistic approach in which the pi-N interaction is simulated by a
short-ranged potential. The pi-d scattering length has been calculated exactly
by solving the Faddeev equations and also by using a static approximation. It
has been shown that the same very accurate static formula for pi-d scattering
length can be derived (i) from a set of boundary conditions; (ii) by a
reduction of Faddeev equations; and (iii) through a summation of Feynman
diagrams. By imposing the requirement that the pi-d scattering length,
resulting from Faddeev-type calculation, be in agreement with pionic deuterium
data, we obtain bounds on the pi-N scattering lengths. The dominant source of
uncertainty on the deduced values of the pi-N scattering lengths are the
experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure
Renormalization of the Inverse Square Potential
The quantum-mechanical D-dimensional inverse square potential is analyzed
using field-theoretic renormalization techniques. A solution is presented for
both the bound-state and scattering sectors of the theory using cutoff and
dimensional regularization. In the renormalized version of the theory, there is
a strong-coupling regime where quantum-mechanical breaking of scale symmetry
takes place through dimensional transmutation, with the creation of a single
bound state and of an energy-dependent s-wave scattering matrix element.Comment: 5 page
Contract cheating: a survey of Australian university staff
If media reports are to be believed, Australian universities are facing a significant and growing problem of students outsourcing their assessment to third parties, a behaviour commonly known as âcontract cheatingâ. Teaching staff are integral to preventing and managing this emerging form of cheating, yet there has been little evidence-based research to inform changes to their practice. This paper reports on the findings of a large-scale survey of teaching staff in Australian universities on the topic of contract cheating. It investigated staff experiences with and attitudes towards student cheating, and their views on the individual, contextual and organisational factors that inhibit or support efforts to minimise it. Findings indicate that contract cheating could be addressed by improving key aspects of the teaching and learning environment, including the relationships between students and staff. Such improvements are likely to minimise cheating, and also improve detection when cheating occurs
- âŠ