111 research outputs found

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    New Limits to the Drift of Fundamental Constants from Laboratory Measurements

    Get PDF
    We have remeasured the absolute 1S1S-2S2S transition frequency ÎœH\nu_{\rm {H}} in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (−29±57)(-29\pm 57) Hz for the drift of ÎœH\nu_{\rm {H}} with respect to the ground state hyperfine splitting ÎœCs\nu_{{\rm {Cs}}} in 133^{133}Cs. Combining this result with the recently published optical transition frequency in 199^{199}Hg+^+ against ÎœCs\nu_{\rm {Cs}} and a microwave 87^{87}Rb and 133^{133}Cs clock comparison, we deduce separate limits on α˙/α=(−0.9±2.9)×10−15\dot{\alpha}/\alpha = (-0.9\pm 2.9)\times 10^{-15} yr−1^{-1} and the fractional time variation of the ratio of Rb and Cs nuclear magnetic moments ÎŒRb/ÎŒCs\mu_{\rm {Rb}}/\mu_{\rm {Cs}} equal to (−0.5±1.7)×10−15(-0.5 \pm 1.7)\times 10^{-15} yr−1^{-1}. The latter provides information on the temporal behavior of the constant of strong interaction.Comment: 4 pages, 3 figures, LaTe

    Optical Clocks in Space

    Get PDF
    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.Comment: Proc. III International Conference on Particle and Fundamental Physics in Space (SpacePart06), Beijing 19 - 21 April 2006, to appear in Nucl. Phys.

    High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy

    Get PDF
    Background: Historical records suggest that multiple burial sites from the 14th-16(th) centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics.Methodology/Principal Findings: High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype.Conclusions: These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century

    Yersinia pestis Lineages in Mongolia

    Get PDF
    BACKGROUND: Whole genome sequencing allowed the development of a number of high resolution sequence based typing tools for Yersinia (Y.) pestis. The application of these methods on isolates from most known foci worldwide and in particular from China and the Former Soviet Union has dramatically improved our understanding of the population structure of this species. In the current view, Y. pestis including the non or moderate human pathogen Y. pestis subspecies microtus emerged from Yersinia pseudotuberculosis about 2,600 to 28,600 years ago in central Asia. The majority of central Asia natural foci have been investigated. However these investigations included only few strains from Mongolia. METHODOLOGY/PRINCIPAL FINDINGS: Clustered Regularly Interspaced Short Prokaryotic Repeats (CRISPR) analysis and Multiple-locus variable number of tandem repeats (VNTR) analysis (MLVA) with 25 loci was performed on 100 Y. pestis strains, isolated from 37 sampling areas in Mongolia. The resulting data were compared with previously published data from more than 500 plague strains, 130 of which had also been previously genotyped by single nucleotide polymorphism (SNP) analysis. The comparison revealed six main clusters including the three microtus biovars Ulegeica, Altaica, and Xilingolensis. The largest cluster comprises 78 isolates, with unique and new genotypes seen so far in Mongolia only. Typing of selected isolates by key SNPs was used to robustly assign the corresponding clusters to previously defined SNP branches. CONCLUSIONS/SIGNIFICANCE: We show that Mongolia hosts the most recent microtus clade (Ulegeica). Interestingly no representatives of the ancestral Y. pestis subspecies pestis nodes previously identified in North-western China were identified in this study. This observation suggests that the subsequent evolution steps within Y. pestis pestis did not occur in Mongolia. Rather, Mongolia was most likely re-colonized by more recent clades coming back from China contemporary of the black death pandemic, or more recently in the past 600 years

    Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico

    Get PDF
    Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen
    • 

    corecore