55 research outputs found

    Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A

    Get PDF
    AbstractAdipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein–protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites

    Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover

    Get PDF
    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis

    Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation

    Get PDF
    Adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) are limiting in cellular triglyceride catabolism. Although ATGL deficiency is compatible with normal skin development, mice globally lacking CGI-58 die postnatally and exhibit a severe epidermal permeability barrier defect, which may originate from epidermal and/or peripheral changes in lipid and energy metabolism. Here, we show that epidermis-specific disruption of CGI-58 is sufficient to provoke a defect in the formation of a functional corneocyte lipid envelope linked to impaired ω-O-acylceramide synthesis. As a result, epidermis-specific CGI-58-deficient mice show severe skin dysfunction, arguing for a tissue autonomous cause of disease development. Defective skin permeability barrier formation in global CGI-58-deficient mice could be reversed via transgenic restoration of CGI-58 expression in differentiated but not basal keratinocytes suggesting that CGI-58 is essential for lipid metabolism in suprabasal epidermal layers. The compatibility of ATGL deficiency with normal epidermal function indicated that CGI-58 may stimulate an epidermal triglyceride lipase beyond ATGL required for the adequate provision of fatty acids as a substrate for ω-O-acylceramide synthesis. Pharmacological inhibition of ATGL enzyme activity similarly reduced triglyceride-hydrolytic activities in wild-type and CGI-58 overexpressing epidermis implicating that CGI-58 participates in ω-O-acylceramide biogenesis independent of its role as a coactivator of epidermal triglyceride catabolism

    Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice

    Get PDF
    Background and Aims: Increased fatty acid (FA) flux from adipose tissue to the liver contributes to the development of NAFLD. Because free FAs are key lipotoxic triggers accelerating disease progression, inhibiting adipose triglyceride lipase (ATGL)/patatin-like phospholipase domain containing 2 (PNPLA2), the main enzyme driving lipolysis, may attenuate steatohepatitis. Approach and Results: Hepatocyte-specific ATGL knockout (ATGL LKO) mice were challenged with methionine-choline–deficient (MCD) or high-fat high-carbohydrate (HFHC) diet. Serum biochemistry, hepatic lipid content and liver histology were assessed. Mechanistically, hepatic gene and protein expression of lipid metabolism, inflammation, fibrosis, apoptosis, and endoplasmic reticulum (ER) stress markers were investigated. DNA binding activity for peroxisome proliferator-activated receptor (PPAR) α and PPARδ was measured. After short hairpin RNA–mediated ATGL knockdown, HepG2 cells were treated with lipopolysaccharide (LPS) or oleic acid:palmitic acid 2:1 (OP21) to explore the direct role of ATGL in inflammation in vitro. On MCD and HFHC challenge, ATGL LKO mice showed reduced PPARα and increased PPARδ DNA binding activity when compared with challenged wild-type (WT) mice. Despite histologically and biochemically pronounced hepatic steatosis, dietary-challenged ATGL LKO mice showed lower hepatic inflammation, reflected by the reduced number of Galectin3/MAC-2 and myeloperoxidase-positive cells and low mRNA expression levels of inflammatory markers (such as IL-1β and F4/80) when compared with WT mice. In line with this, protein levels of the ER stress markers protein kinase R–like endoplasmic reticulum kinase and inositol-requiring enzyme 1α were reduced in ATGL LKO mice fed with MCD diet. Accordingly, pretreatment of LPS-treated HepG2 cells with the PPARδ agonist GW0742 suppressed mRNA expression of inflammatory markers. Additionally, ATGL knockdown in HepG2 cells attenuated LPS/OP21-induced expression of proinflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand 5, chemokine (C-C motif) ligand (Ccl) 2, and Ccl5. Conclusions: Low hepatic lipolysis and increased PPARδ activity in ATGL/PNPLA2 deficiency may counteract hepatic inflammation and ER stress despite increased steatosis. Therefore, lowering hepatocyte lipolysis through ATGL inhibition represents a promising therapeutic strategy for the treatment of steatohepatitis

    Adiponutrin Functions as a Nutritionally Regulated Lysophosphatidic Acid Acyltransferase

    Get PDF
    SummaryNumerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant

    Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation

    Get PDF
    SummaryAdipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes

    Deciphering lipid structures based on platform-independent decision rule sets

    Get PDF
    We developed decision rule sets for Lipid Data Analyzer (LDA; http://genome.tugraz.at/lda2), enabling automated and reliable annotation of lipid species and their molecular structures in high-throughput data from chromatography-coupled tandem mass spectrometry. Platform independence was proven in various mass spectrometric experiments, comprising low- and high-resolution instruments and several collision energies. We propose that this independence and the capability to identify novel lipid molecular species render current state-of-the-art lipid libraries now obsolete

    Cardioprotection and lifespan extension by the natural polyamine spermidine

    Get PDF
    Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease

    The interplay of protein kinase a and Perilipin 5 regulates cardiac lipolysis

    No full text
    Defective lipolysis in mice lacking adipose triglyceride lipase provokes severe cardiac steatosis and heart dysfunction, markedly shortening life span. Similarly, cardiac muscle (CM)-specific Plin5 overexpression (CM-Plin5) leads to severe triglyceride (TG) accumulation in cardiomyocytes via impairing TG breakdown. Interestingly, cardiac steatosis due to overexpression of Plin5 is compatible with normal heart function and life span indicating a more moderate impact of Plin5 overexpression on cardiac lipolysis and energy metabolism. We hypothesized that cardiac Plin5 overexpression does not constantly impair cardiac lipolysis. In line with this assumption, TG levels decreased in CM of fasted compared with nonfasted CMPlin5 mice indicating that fasting may lead to a diminished barrier function of Plin5. Recent studies demonstrated that Plin5 is phosphorylated, and activation of adenylyl cyclase leads to phosphorylation of Plin5, suggesting that Plin5 is a substrate for PKA. Furthermore, any significance of Plin5 phosphorylation by PKA in the regulation of TG mobilization from lipid droplets (LDs) is unknown. Here, we show that the lipolytic barrier of Plin5-enriched LDs, either prepared from cardiac tissue of CM-Plin5 mice or Plin5-transfected cells, is abrogated by incubation with PKA. Notably, PKA-induced lipolysis of LDs enriched with Plin5 carrying a single mutation at serine 155 (PlinS155A) of the putative PKA phosphorylation site was substantially impaired revealing a critical role for PKA in Plin5- regulated lipolysis. The strong increase in protein levels of phosphorylated PKA in CM of Plin5 transgenic mice may partially restore fatty acid release from Plin5-enriched LDs, rendering these hearts compatible with normal heart function despite massive steatosis
    • …
    corecore