67 research outputs found

    Stiffer optical tweezers through real-time feedback control

    Get PDF
    Using real-time re-programmable signal processing we connect acousto-optic steering and back-focal-plane interferometric position detection in optical tweezers to create a fast feedback controlled instrument. When trapping 3 µm latex beads in water we find that proportional-gain position-clamping increases the effective lateral trap stiffness ~13-fold. A theoretical power spectrum for bead fluctuations during position-clamped trapping is derived and agrees with the experimental data. The loop delay, ~19 µs in our experiment, limits the maximum achievable effective trap stiffness

    Bayesian inference of physiologically meaningful parameters from body sway measurements

    Get PDF
    The control of the human body sway by the central nervous system, muscles, and conscious brain is of interest since body sway carries information about the physiological status of a person. Several models have been proposed to describe body sway in an upright standing position, however, due to the statistical intractability of the more realistic models, no formal parameter inference has previously been conducted and the expressive power of such models for real human subjects remains unknown. Using the latest advances in Bayesian statistical inference for intractable models, we fitted a nonlinear control model to posturographic measurements, and we showed that it can accurately predict the sway characteristics of both simulated and real subjects. Our method provides a full statistical characterization of the uncertainty related to all model parameters as quantified by posterior probability density functions, which is useful for comparisons across subjects and test settings. The ability to infer intractable control models from sensor data opens new possibilities for monitoring and predicting body status in health applications.Peer reviewe

    Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography

    Get PDF
    Objective: Collagen distribution within articular cartilage (AC) is typically evaluated from histological sections, e.g., using collagen staining and light microscopy (LM). Unfortunately, all techniques based on histological sections are time-consuming, destructive, and without extraordinary effort, limited to two dimensions. This study investigates whether phosphotungstic acid (PTA) and phosphomolybdic acid (PMA), two collagen-specific markers and X-ray absorbers, could (1) produce contrast for AC X-ray imaging or (2) be used to detect collagen distribution within AC. Method: We labeled equine AC samples with PTA or PMA and imaged them with micro-computed tomography (micro-CT) at pre-defined time points 0, 18, 36, 54, 72, 90, 180, 270 h during staining. The micro-CT image intensity was compared with collagen distributions obtained with a reference technique, i.e., Fourier-transform infrared imaging (FTIRI). The labeling time and contrast agent producing highest association (Pearson correlation, BlandeAltman analysis) between FTIRI collagen distribution and micro-CT -determined PTA distribution was selected for human AC. Results: Both, PTA and PMA labeling permitted visualization of AC features using micro-CT in non-calcified cartilage. After labeling the samples for 36 h in PTA, the spatial distribution of X-ray attenuation correlated highly with the collagen distribution determined by FTIRI in both equine (mean +/- S.D. of the Pearson correlation coefficients, r = 0.96 +/- 0.03, n = 12) and human AC (r = 0.82 +/- 0.15, n = 4). Conclusions: PTA-induced X-ray attenuation is a potential marker for non-destructive detection of AC collagen distributions in 3D. This approach opens new possibilities in development of non-destructive 3D histopathological techniques for characterization of OA. (C) 2015 The Authors. Published by Elsevier Ltd and Osteoarthritis Research Society International.Peer reviewe

    Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC16 from infected cell membrane to Maurer’s clefts

    Get PDF
    Merozoite release from infected erythrocytes is a complex process, which is still not fully understood. Such process was characterised at ultra-structural level in this work by labelling erythrocyte membrane with a fluorescent lipid probe and subsequent photo-conversion into an electron-dense precipitate. A lipophilic DiIC16 probe was inserted into the infected erythrocyte surface and the transport of this phospholipid analogue through the erythrocyte membrane was followed up during 48 h of the asexual erythrocyte cycle. The lipid probe was transferred from infected erythrocyte membranes to Maurer’s clefts during merozoite release, thereby indicating that these membranes remained inside host cells after parasite release. Fluorescent structures were never observed inside infected erythrocytes preceding merozoite exit and merozoites released from infected erythrocyte were not fluorescent. However, specific precipitated material was localised bordering the parasitophorous vacuole membrane and tubovesicular membranes when labelled non-infected erythrocytes were invaded by merozoites. It was revealed that lipids were interchangeable from one membrane to another, passing from infected erythrocyte membrane to Maurer’s clefts inside the erythrocyte ghost, even after merozoite release. Maurer’s clefts became photo-converted following merozoite release, suggesting that these structures were in close contact with infected erythrocyte membrane during merozoite exit and possibly played some role in malarial parasite exit from the host cell

    Capacitive micromachined ultrasonic transducer design for high power transmission

    No full text
    Capacitive micromachined ultrasonic transducers (cMUTs) were developed to meet the demands of the ultrasonic industry. To achieve maximum efficiency, the conventional operation of the cMUT requires a bias voltage close to the collapse voltage. Total acoustic output pressure is limited by the efficiency of the cMUT and the maximum-allowed pulse voltage on the membrane. In this paper, we propose the collapse-snapback operation of the cMUT: the membrane is collapsed onto the substrate in the collapsing cycle, and released in the snapback cycle. The collapse-snapback operation overcomes the above-mentioned limitations of the conventional operation. The collapse-snapback operation utilizes a larger range of membrane deflection profiles (both collapsed and released profiles) and generates higher acoustic output pressures. The static finite element calculations were performed to design cMUTs with specific collapse and snapback voltages by changing the electrode parameters (radius (r(e)), position (d(e)), and thickness (t(e))). These designs were refined for optimum average displacement per cycle. An electrode radius greater than 60% of the membrane radius significantly improved the displacement per volt. Moderately thick membranes (t(e) similar to 0.2 mu m) were preferred, as thicker membranes reduced the displacement per volt. Under proper bias conditions, the collapse-snapback operation, designed for high-power transmission, allowed the application of pulse voltages larger than the difference of collapse and snapback voltages. Dynamic finite element calculations of an infinite cMUT array on the substrate loaded with acoustic fluid medium were performed to determine the dynamic response of the cMUT. Commercially available FEM packages ANSYS and LS-DYNA were used for static and dynamic calculations, respectively. The cMUTs were fabricated for optimal performance in the collapse-snapback operation. The transmit experiments were performed on a 2-D cMUT array using a calibrated hydrophone. Taking into account the attenunation and diffraction losses, the pressure on the cMUT surface was extracted. The cMUT generated 0.47 MPa (6 kPa/V) and 1.04 MPa (11 kPa/V) in the conventional and collapse-snapback operations, respectively. Therefore, collapse-snapback operation of the cMUTs was superior for high-power transmission

    A new regime for operating capacitive micromachined ultrasonic transducers

    No full text
    We report on a new operation regime for capacitive micromachined ultrasonic transducers (cMUTs). Traditionally, cMUTs are operated at a bias voltage lower than the collapse voltage of their membranes. In the new proposed operation regime, first the cMUT is biased past the collapse voltage. Second, the bias voltage applied to the collapsed membrane is reduced without releasing the membrane. Third, the cMUT is excited with an ac signal at the bias point, keeping the total applied voltage between the collapse and snapback voltages. In this operation regime, the center of the membrane is always in contact with the substrate. Our finite element methods (FEM) calculations reveal that a cMUT operating in this new regime, between collapse and snapback voltages, possesses a coupling efficiency (k(T)(2)) higher than a cMUT operating in the conventional regime below its collapse voltage. This paper compares the simulation results of the coupling efficiencies of cMUTs operating in conventional and new operation regimes

    Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers

    No full text
    The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer. In this paper, we present the calculation and measurement of coupling coefficient for capacitive micromachined ultrasonic transducers (CMUTs). The finite element method (FEM) is used for our calculations, and the FEM results are compared with the analytical results obtained with parallel plate approximation. The effect of series and parallel capacitances in the CMUT also is investigated. The FEM calculations of the CMUT indicate that the electromechanical coupling coefficient is independent of any series capacitance that may exist in the structure. The series capacitance, however, alters the collapse voltage of the membrane. The parallel parasitic capacitance that may exist in a CMUT or is external to the transducer reduces the coupling coefficient at a given bias voltage. At the collapse, regardless of the parasitics, the coupling coefficient reaches unity. Our experimental measurements confirm a coupling coefficient of 0.85 before collapse, and measurements are in agreement with theory

    Dynamic analysis of CMUTs in different regimes of operation

    No full text
    This paper reports on dynamic analysis of an immersed single capacitive micromachined ultrasonic transducer (CMUT) cell transmitting. A water loaded 24 mum circular silicon membrane of a transducer was modeled. The calculated collapse and snapback voltages were 80 V and 50 V, respectively. The resonance frequency, output pressure and nonlinearity of the CMUT in three regimes of operation were determined. These regimes were: a) the conventional regime in which the membrane does not make contact with the substrate, b) the collapsed regime in which the center of the membrane is in constant contact with the substrate, and c) the collapse-snapback regime in which the membrane intermittently makes contact with the substrate and releases. The average membrane displacement was compared as the CMUT was operated in these regimes. A displacement of 70 A in the collapsed regime and 39 Angstrom in conventional regime operation were predicted when a 5 V pulse was applied to the CMUT cell biased at 70 V. The CMUT showed a 2(nd) harmonic at -16 dB and -26 dB in conventional and collapsed regimes of operation, respectively. Collapse-snapback operation provided increased output pressure at the expense of a 3(rd) harmonic at -10 dB. Our simulations predicted that the average output pressure at the membrane could be 90 kPa/V with collapse-snapback operation compared to 4 kPaN with conventional operation
    • …
    corecore