14 research outputs found
Transfer standard for traceable dynamic calibration of stroboscopic scanning white light interferometer
The reconstructed image of a moving sample always shows a distorted representation of reality. Therefore, one needs to calibrate, for example, out-of-plane nano-videos for quality control of nano-microelectromechanical systems (N-MEMS). Here we discuss how to calibrate and obtain confidence limits for stroboscopic scanning white light interferometry (SSWLI) data when there are differences in speed and amplitude across the field of view. Many N-MEMS devices rely on oscillating structures; consequently, one must calibrate movie recordings of these structures to have global standards and to allow inter-device comparison. We propose to use a quartz tuning fork driven off-resonance as a transfer standard. This approach allows a broad range of traceable frequencies and out-of-plane amplitudes to be introduced into selected parts of the field of view of the SSWLI device featuring similar optical surface properties to many N-MEMS devices without demanding an additional reference surface. (C) 2017 Optical Society of AmericaPeer reviewe
Single-molecule measurements of viral ssRNA packaging
Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage phi 6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the phi 6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.Peer reviewe
Lyophilic matrix method for dissolution and release studies of nanoscale particles
We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe
Delivering Agents Locally into Articular Cartilage by Intense MHz Ultrasound
There is no cure for osteoarthritis. Current drug delivery relies on systemic delivery or injections into the joint. Because articular cartilage (AC) degeneration can be local and drug exposure outside the lesion can cause adverse effects, localized drug delivery could permit new drug treatment strategies. We investigated whether intense megahertz ultrasound (frequency: 1.138 MHz, peak positive pressure: 2.7 MPa, I-spta: 5 W/cm(2), beam width: 5.7 mm at -6 dB, duty cycle: 5%, pulse repetition frequency: 285 Hz, mechanical index: 1.1) can deliver agents into AC without damaging it. Using ultrasound, we delivered a drug surrogate down to a depth corresponding to 53% depth of the AC thickness without causing histologically detectable damage to the AC. This may be important because early osteoarthritis typically exhibits histopathologic changes in the superficial AC. In conclusion, we identify intense megahertz ultrasound as a technique that potentially enables localized non-destructive delivery of osteoarthritis drugs or drug carriers into articular cartilage. (E-mail: [email protected]) (C) 2015 World Federation for Ultrasound in Medicine & Biology.Peer reviewe
Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos
Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development.Peer reviewe
Practical realization of a sub-λ/2 acoustic jet
Studies in optics and acoustics have employed metamaterial lenses to achieve sub-wavelength localization, e.g. a recently introduced concept called 'acoustojet' which in simulations localizes acoustic energy to a spot smaller than lambda/2. However previous experimental results on the acoustojet have barely reached lambda/2-wide localization. Here we show, by simulations and experiments, that a sub-lambda/2 wide localization can be achieved by translating the concept of a photonic jet into the acoustic realm. We performed nano-to macroscale molecular dynamics (MD) and finite element method (FEM) simulations as well as macroscale experiments. We demonstrated that by choosing a suitable size cylindrical lens, and by selecting the speed-of-sound ratio between the lens material(s) and the surrounding medium, an acoustic jet ('acoustic sheet') is formed with a full width at half maximum (FWHM) less than lambda/2. The results show, that the acoustojet approach can be experimentally realized with easy-to-manufacture acoustic lenses at the macroscale. MD simulations demonstrate that the concept can be extended to coherent phonons at nanoscale. Finally, our FEM simulations identify some micrometer size structures that could be realized in practice. Our results may contribute to starting a new era of super resolution acoustic imaging: We foresee that jet generating constructs can be readily manufactured, since suitable material combinations can be found from nanoscale to macroscale. Tight focusing of mechanical energy is highly desirable in e.g. electronics, materials science, medicine, biosciences, and energy harvesting.Peer reviewe
Light-sample interaction in microsphere enhanced 2D super-resolution imaging
We simulate the image generated by a microsphere residing in contact on top of an exposed Blu-ray disk surface, when observed by a conventional microscope objective. While microsphere lenses have been used to focus light beyond the diffraction limit and to produce super-resolution images, the nature of the light-sample interaction is still under debate. Simulations in related articles predict the characteristics of the photonic nanojet (PNJ) formed by the microsphere, but so far, no data has been published on the image formation in the far-field. For our simulations, we use the open source package Angora and the commercial software RSoft FullWave. Both packages implement the Finite Difference Time Domain (FDTD) approach. Angora permits us to accurately simulate microscope imaging at the diffraction limit. The RSoft FullWave is able to record the steady-state complex electrical and magnetic fields for multiple wavelengths inside the simulation domain. A microsphere is simulated residing on top of a dielectric substrate featuring sub-wavelength surface features. The scattered light is recorded at the edges of the simulation domain and is then used in the near-field to far-field transformation. The light in the far field is then refocused using an idealized objective model, to give us the simulated microscope image. Comparisons between the simulated image and experimentally acquired microscope images verify the accuracy of our model, whereas the simulation data predicts the interaction between the PNJ and the imaged sample. This allows us to isolate and quantify the near-field patterns of light that enable super-resolution imaging, which is important when developing new micro-optical focusing structures.Peer reviewe
Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers
We report experimental results from a comparative study on collapsed region and conventional region operation of capacitive micromachined ultrasonic transducers (CMUTs) fabricated with a wafer bonding technique. Using ultrasonic pulse-echo and pitch-catch measurements, we characterized single elements of 1-D CMUT arrays operating in oil. The experimental results from this study agreed with the simulation results: a CMUT operating in the collapsed region produced a higher maximum output pressure than a CMUT operated in the conventional region at 90% of its collapse voltage (3 kPa/V vs. 16.1 kPa/V at 2.3 MHz). While the pulse-echo fractional bandwidth (126%) was higher in the collapsed region operation than in the conventional operation (117%), the pulse-echo amplitude in collapsed region operation was 11 dB higher than in conventional region operation. Furthermore, within the range of tested bias voltages, the output pressure monotonously increased with increased bias during collapsed region operation. It was also found that in the conventional mode, short AC pulses (larger than the collapse voltage) could be applied without collapsing the membranes. Finally, while no significant difference was observed in reflectivity of the CMUT face between the two regions of operation, hysteretic behavior of the devices was identified in the collapsed region operation