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The reconstructed image of a moving sample shows always a distorted representation of reality. Therefore, one 
needs to calibrate, for example, out-of-plane nano-videos for quality control of Nano-Microelectromechanical 
systems (N-MEMS). Here we discuss how to calibrate and obtain confidence limits for Stroboscopic Scanning White 
Light Interferometry (SSWLI) data when there are differences in speed and amplitude across the field of view. 
Many N-MEMS devices rely on oscillating structures, consequently, one must calibrate movie recordings of these 
structures to have global standards and to allow inter-device comparison. We propose to use a quartz tuning fork 
driven off-resonance as a transfer standard. This approach allows a broad range of traceable frequencies and out-
of-plane amplitudes to be introduced into selected parts of the field of view of the SSWLI device featuring similar 
optical surface properties to many N-MEMS devices, and without demanding an additional reference surface.  

 

OCIS codes: (120.3940) Metrology; (120.4800) Optical standards and testing; (120.3180) Interferometry.  
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1. INTRODUCTION 
In Nano-Microelectromechanical systems modelling-based design and 
quality control (QC), “seeing is believing” and dynamic QC reveals 
features that cannot be observed in static measurements [1, 2]. 
Stroboscopic Scanning White Light Interferometry, a four dimensional 
(4D) camera, permits such advanced QC. Unfortunately the video 
camera ”lies”, because the illumination and the motion of the object as 
well as its surface properties affect the way the sample is perceived. 
This is due to both optical and numerical image reconstruction 
reasons. One therefore needs to know how to calibrate the out-of-
plane nano-videos of such N-MEMS structures. In practice one needs to 
solve the problem of how to calibrate and obtain confidence limits for 
SSWLI 4D data when there are differences in speed and amplitude 
across the field of view. This calibration problem relies on getting three 
things right: (i) identifying a transfer standard (TS) whose motion can 
be controlled and is known, (ii) making the TS motion traceable to the 
national standard, and (iii) finding a way to extract and implement the 
calibration parameters to raw 4D data (Fig. 1). Step (ii) is important 
since existing national standards are either quasi-dynamic [3] or 
mechanically narrow band (single frequency) dynamic [4].  

The ability to do 4D calibration is valuable because most N-MEMS 
devices feature oscillating structures [5- 7]. By calibrating recorded 
repeatable movies of N-MEMS structures one can have global 
standards and inter-device comparison.  
 

 
 
Fig. 1. Schematic description of 4D calibration.  
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There is a set of requirements such as - repeatable motion, size, and 
surface roughness which should be compatible with those present in 
N-MEMS, that a SSWLI-TS must fulfill [8]. The TS should feature no tall 
steps to minimize bat wing effects [8]. A quartz tuning fork (TF) driven 
off-resonance could potentially allow new calibration capability by 
permitting a broad range of traceable frequencies and out-of-plane 
amplitudes to be introduced into selected parts of the field-of-view of 
the SSWLI device. This solution has the extra advantage of requiring no 
additional reference surface. The solution is attractive because quartz 
tuning forks, a common frequency standard, feature well-known 
material properties as a function of ambient environmental 
parameters. The TF also possesses optical surface properties close to 
those of many N-MEMS devices. 
The proposed solution is new because it permits calibration over a 
broad range of frequencies and most importantly over a broad 
continuous range of speeds across the field of view.  
To perform the calibration, one could use a single point measuring 
device, e.g. a laser Doppler vibrometer (LDV), traceably clinked to the 
national metrological standard, to measure the out-of-plane oscillation 
of the TF prongs. After that, the same motion under similar 
environmental (e.g. 21°C and 50% relative humidity) and drive-
conditions should be measured with the SSWLI. To correct for speed 
differences across the SSWLI field of view we approximate the shape of 
the single prong by using the theoretical mode shape of the clamped 
free beam oscillating with the same frequency. The correction factor to 
be applied to the SSWLI data is different for each mode shape, each 
amplitude, and each position along the prong (Fig. 2).   
 

 
 
Figure 2: Quartz tuning fork driven in antisymmetric out-of-plane 
mode. Indicated are points that could be used for calibration with a 
laser Doppler vibrometer. Here d represents distance from the prong 
tip. 

2. SSWLI ERROR ESTIMATION 
SSWLI allows imaging oscillating samples when the device is equipped 
with pulsed illumination synchronized with the sample movement. In 
this way, to the image sensor – a CCD camera - the sample appears 
frozen and the measuring procedure can be done in the same way as in 
the static case. To image the sample in a different position a phase 
difference between the drive signal applied to the sample and the 
pulsed illumination is introduced. Theoretically, this issue has been 
considered in [9].  
The general equation for the interference signal produced by a moving 
sample and stroboscopic illumination is:  
 
             ,          (1)  

 
where the effect of sample motion is taken into account by the 
function: 
 
 
 
                    ,        (2) 

with (t) parameterizing the oscillatory sample motion with 
frequency f and amplitude : 

 
    (t)=sin(2 f t ).                                         (3) 

 
Above,  represents the scan position, t0 is the center of the 
stroboscopic pulse duration  t , and q(K) describes the emission 
spectrum of the illumination source. The duty cycle is D = f t .  

A. Systematic measurement error estimation 

Due to the stroboscopic illumination of the sample, a systematic 
measurement error emerges: the sample height is a function of the 
duty cycle. Naturally, the systematic error is a function of duty cycle. 
The measurement error due to sample motion at a certain t0 is:  
 
 
               (4) 
 
where  

                         






2

2

0

_
0

0

)2sin()(

t
t

t
t

dtftt





 .                         (5) 

 
As expected, the shorter the duty cycle, the smaller the 
systematic measurement error.  
There are two important instances during the sinusoidal sample 
motion (we consider one period of motion, starting at  = 0): 
i) for t0 = 0, the sample moves fast, but with constant speed. The 
measurement error (Eq. 4) is in this case zero, i.e. the average sample 
position during the illuminating pulse equals the exact sample position; 
ii) for t0 = T/4 or 3T/4, at the turning points of the oscillation, the 
sample moves very slowly, but the acceleration is maximum. In this 
case the measurement error is maximum, and Eq. (4) shows that the 
actual position is underestimated. 

B. Restriction on duty cycle due to fringe contrast loss 

The fringe contrast in the static case is described by the Fourier 
transform of the power spectrum emitted by the light source. When 
the sample moves (dynamic case), the power spectrum is additionally 
weighted by u (K) in Eq. (1).  
Even with a simple Gaussian power spectrum, the integrals are hard to 
calculate in closed analytic form. The general form of the signal, with a 
change of variables  = 2 f t , is: 
 
                
 
           ,     (6) 
 
 
 
where R and Z are the effective reflectivity (intensity) of the reference 
and object, respectively, IW  is the integral across the power spectrum 

of the light source, K  is the median and K is the variance of the 
Gaussian distribution. The analysis of fringe contrast loss by de Groot is 

done using the approximation sin ~ , which is justified only when 

the integration range in  is less than 8°. This simplifying assumption 
means that πD in Eq. (6) is maximum 0.14 rad, which restricts the duty 
cycle to < 2%. In this case the time-dependent optical path difference 
entering Eq. (6) is: 
 

                ,     0=2 f t0 ,    (7) 
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which simplifies the evaluation of the fringe contrast loss due to 
sample motion. Consequently, throughout this paper we consider duty 
cycles D ≤ 2%. 
To apply the above general considerations to oscillating tuning forks, 
we review their mechanical oscillatory properties. To analyze the 
systematic measurement error, according to Eq. (4), one has to take 
into account the fact that the oscillation amplitude varies across the TF 
and find the explicit expression for the point-dependent amplitude. 
Also, one has to make sure that D is ≤ 2% of the period of the vibration 
mode to be measured. 

3. PROPERTIES OF AN OSCILLATING TUNING FORK 
For convenience, we discuss four eigen modes of the TF. Two move in 
the horizontal plane (symmetric and anti phase) and two move out of 
that plane (symmetric and anti-phase). For calibration the preferred 
mode is the antisymmetric out-of-plane one, see Fig. 2. Tuning forks 
have been widely modeled in the literature by a single harmonic 
oscillator [10, 11]. At sufficiently small amplitudes (sin(x) x) the TF can 
be described as a harmonic oscillator subject to a harmonic driving 
force F =F0 cos(ωt) and a drag force with linear velocity dependence 
[10]. The equation of motion is: 
 
    .   (8) 
 
The four parameters are: mass m (of one prong), damping coefficient γ, 
spring constant k, and driving force amplitude F0. The mass and the 
damping coefficient depend on the medium surrounding the oscillating 
fork. The steady state solution of Eq. (8) is: 
 
 x(t) = xa(ω)sin(ωt) + xd(ω)cos(ωt),                             (9) 

 
where xa and xd parametrize the absorption and dispersion, 
respectively [10]. 
The general solution of Eq. (8) gives the mode shape of the 
beam/prong under different boundary conditions: 
 
 (x) = Asinax + Bcosax + Csinhax + Fcoshax ,               (10) 

where A, B, C and F are integration constants. For a beam clamped at 
one end and free at the other end the mode shape is: 
 
i(x) = cosh(ix/L) - cos(ix/L) - i(sinh(ix/L) - sin(ix/L) , (11) 

where i and i, are constants given by the boundary conditions, see 
[10]. Figure 3 shows the steady-state mode shape for the first three 
modes of the clamped – free beam [12]. 
 
 

 
 
Figure 3. Steady-state mode shapes of first three modes of a clamped – 
free beam [12].  
 

The corresponding time dependence of the i-th mode is sin2 fi t 
where:  
 

 
                      (12)   
 
Here L is the length of the prong, E is the modulus of elasticity along the 
direction of oscillation, and I is the areal moment of inertia of the prong 
about its neutral axis [11].  

4. METHODS 
The theoretical model was tested by performing SSWLI and symmetric 
differential heterodyne laser interferometer (SDHLI) [13] 
measurements on a tuning fork at 5 positions along both prongs.  
The measurements were done on a fork residing inside a closed IC 
package through the top glass surface of the device. This provides a 
stable pressure and humidity environment for the fork, but slightly 
decreases the measurement repeatability and limits the measurable 
area to within 2 mm from the free end of the fork. The laser 
interferometer limits the measurements to areas on the prong that are 
gold coated. 
Both measurements relied on the visible edges of the gold coating and 
on the loss of signal at the end of the prong for position reference. In 
the SDHLI measurement only the gold areas gave a signal, whereas 
with SSWLI the edges of coated areas were seen as steps in the 
measured profile. The position along the prong of the SDHLI 
measurements was determined by the scale of a mechanical 
micropositioning stage with 5 µm division. The spot size of the SDHLI 
was reduced to 10 µm using a 50 mm focal length focusing lens. For 
SSWLI the effective pixel size of 2.96 µm (7.4 µm physical pixel size, 5x 
objective, 0.5x secondary lens) served as horizontal scale. The ambient 
temperature during the SDHLI measurements was 19.82 ± 0.04 °C 
whereas for SSWLI it was 23.3 ± 0.2 °C. The prong length determined 
using the 2D imaging mode of a Bruker ContourGT-K optical profiler 
(2.5x objective, 0.55x secondary lens) was 3060 ± 10 µm. 
The measured peak to peak displacement is the average of 
measurements from the corresponding points on the two prongs. This 
approach was used since the prong movement was symmetric relative 
to the horizontal plane to within a precision of few nm and since the 
second prong moving in opposite phase could be used as reference 
surface for the SSWLI to cancel out drift.  

5. EXPERIMENTAL RESULTS 
The measurement results generated by both instruments 
corresponded to the theoretically predicted shape of mode 1 when the 
prong length was assumed to be 230 µm longer than the prong length 
measured from the separation point of the prongs to the tip of the 
prongs (Fig. 4). This result seems sensible since the base of the prongs 
can bend rotationally when the fork oscillates in the antiphase mode. 
The amplitude measured at point #3 was slightly off the predicted 
value in both instruments. This may be due to an uneven surface of the 
fork at this point (thin line of gold coating).  
 

 
 
Figure 4. Measured shape of mode 1 in Fig. 3. Lines show fits using the 
theoretically predicted mode 1 shape for a 3290 µm long beam.  
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The measured displacements agreed with each other to within 3 %.  A 
fit against a fork length of 3290 µm gives a peak-to-peak amplitude of 
995 ± 7 nm for SSWLI and 1025 ± 8 nm for SDHLI at the fork end.  The 
standard deviation of the vertical distance between the measured data 
points and the fit was 11.4 nm for SDHLI and 8.2 nm for SSWLI. The 
amplitude measured at 2750 µm from the prong base (point #3) 
deviated by ~20 nm from the predicted value in both instruments 
whereas the other measured data points were 3 nm or less from the 
predicted value in both instruments. 
 

6. UNCERTAINTY ANALYSIS OF TFs MEASURED WITH 
SSWLI 
We propose to use quartz TF working in anti-phase out of the plane 
mode as a transfer standard for SSWLI. Together with the benefits of 
using X-cut quartz as a TS material this choice removes the need for a 
specific reference surface. The fact that there is continuous 
displacement across the field of view allows efficient calibration of the 
SSWLI (one can rotate the fork as well as use different parts of the fork 
to calibrate different displacement amplitudes without changing the 
drive signal). 

A. Pulse duration 

The relation D ≤2% must hold for every TF mode. We first analyze two 
independent prongs oscillating out-of-plane and in anti-phase (Fig. 2). 
The duty cycle is: 

D=t/Ti  ,    (13) 

where Ti is the period of the i-th mode and t is the stroboscopic pulse 
duration. By combining Eq. (12) and (13) the duty cycle necessary to 
image the i-th mode is: 
 
                           .                 (14) 
 
For 2% duty cycle, the pulse duration necessary to image the i-th mode 
is: 
 
              .            (15) 

B. Error estimation 

We denote the transverse displacement (out-of-plane movement at 
position x) on the beam oscillating in mode i as: 
 
     .                            (16) 
 
The systematic measurement error in z-direction due to sample 
motion, at a certain time coordinate for the pulse centered at t0, is: 
 
 
             (17) 

 
         . 
 
The absolute error along the z-axis when the oscillating object reaches 
its maximum deflection is  
 
          .                         (18) 
 
 
For every position x along the prong there is a certain underestimation 
of the maximum deflection, i.e. the error changes along the prongs. The 
same is true for the uncertainty in displacement estimate.  
For D = 2%, the relative bias estimate from Eq. (18) is: 

 
      (19) 

 
 

Associated with any mean duty cycle D  there is a statistical 

uncertainty δD that affects the confidence limits of the measurement. 

Assuming x fixed and using the appropriate amplitude of the mode at 
that position, by the law of propagation of error, we have: 
 
       .                  (20)     
 
 

In our case, when ),( Dxi is given by Eq. (18): 
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Obviously, this is a second order effect, since the quantity under the 
modulus sign is of the order of the magnitude of the bias, but it is 

multiplied by the relative error in D . For a pulse duration of e.g. 5 ns, 
and an uncertainty in pulse duration of 0.1 ns, i.e. : 

 02.0
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we get:  
 
 
          (24)     
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If we compare the uncertainty in bias estimate with the measured 

mode amplitude  i (x), the effect is practically negligible: 
 
 
     .              (25)    
 

C. Anti-phase prong movement 

The TF is preferably operated in anti-phase mode in which both 
prongs oscillate out-of-plane (Fig. 2). In this case no reference surface is 
needed to measure the inter-prong distance along the z-axis (the top 
surface of the second prong serves as reference). The base of the TF 
may also serve as a reference if it fits into the field of view (Fig. 2). The 
error in this measurement again depends on the position on the prong 

(x) and is twice that calculated in the case of a single beam. Notably TFs, 
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do however, behave like a pair of coupled beams whose dynamics 
strongly depends on the coupling [11]. 
We initially modeled the TF prongs as two identical harmonic 
oscillators with mass m and elastic constants k. The coupling between 
the prongs could be modeled by a spring with elastic constant kc. 
Within the harmonic approximation the natural modes that solve the 
equation system are: one in which the masses oscillate in-phase with 
identical amplitudes and another in which the masses oscillate in anti-
phase with the same amplitudes. The mechanical coupling between 
the two harmonic oscillators breaks the degeneracy of the uncoupled 
identical oscillators generating two separate natural frequencies: 
 
 
      (26)     
 
 

and         

 
     , (27)  
 
 
where the superscript depicts the natural mode and the subscript ”0” 
specifies that the two oscillators are identical as would be the case for a 
perfectly balanced TF. Based on Eqs. (26) and (27) the elastic constant 
of the coupling kc can be expressed in terms of the elastic constant of 
one prong k and the natural frequencies of the two identical 
coupled  
 

oscillators                              and                                                [11]: 
 
 
 
                                    .       (28) 
 
 
 
This points to a practical way of determining kc . Equations (26) and 
(27) indicate that the anti-phase frequency is higher than the in-phase 
one and this affects the error analysis. For example, a commercial 32 
kHz TF driven in out-of-plane mode  
 

has                                             ~ 6.14 kHz and                                          frequency 
 
 ~10.73 kHz. In this case kc =2.05. Assuming that the duration of the 
stroboscopic pulse t  is such that the duty cycle for the in-phase mode 
is 2% and if the frequency of the anti-phase mode is twice the 
frequency of the in-phase mode, then with the same t, the duty cycle 
for the anti-phase mode is 4%. The corresponding relative errors for 
the in-phase and anti-phase mode, according to Eq. (18), are: 
 
 
       
 
and  
 
            . 
 
 
Even though the error is bigger for the anti-phase mode, the effect is 
still negligible when using a short duty cycle. The confidence limits are 
always small if de Groot’s simple rule of thumb is used: keep the duty 
cycle of the light source ≤ 10% of the period of the vibration mode to be 
measured. 

 

7. DISCUSSION 
We introduced a way to calibrate a SSWLI device used to obtain videos 
of oscillating N-MEMS structures. The approach employs a commercial 
quartz TF operating in out-of-plane anti-phase mode. The idea is that 
the mode-shapes are theoretically known and that the material 
properties of the specimen are rigidly controlled. 
We derived theoretical estimates for measurement error and 
confidence limits for this estimate in a situation relevant to 4D 
microscopy. Focus was on bias induced by the sample motion. This has 
not been done before and represents an extension of de Groot’s work 
[9]. Our approach is similar to what is done in current static calibration 
work (TS plus the idea of how to use it), but adapted to a new setting. 
One critique of the approach in a practical setting may be that we rely 
on the quartz TF behaving in a constant manner across a long 
measurement time since the LDV measures the motion on the tuning 
fork point-by-point. The second critique is that we have to move the TF 
since the approach doesn't allow us to calibrate all pixels in the field of 
view at once. The stability of the fork is again crucial, especially if the 
fork needs to be shifted and the calibration is performed in several 
discrete steps. 
Fork stability could potentially be improved by frequency locking the 
fork to its peak frequency during calibrations. Another option may be 
to record possible frequency shifts during calibration. When the fork is 
run at constant frequency any disturbance to the fork that might shift 
its frequency would decrease the motion amplitude while moving the 
TS from calibration to possibly different and less controllable 
environments outside the calibration laboratory. Permanent changes 
to the TS can already now be checked by recalibrating the fork after 
use. 
The practical feasibility of the proposed method as well as the 
theoretical predictions about fork movement shape was tested by 
performing SSWLI measurement along the length of an oscillating fork. 
These findings support the theoretical movement shape. The test also 
shows that the fork movement stays relatively stable during transport 
from fork calibration using laser interferometer to using it to calibrate 
SSWLI measurements. 
The ability to calibrate 4D in a traceable manner opens up possibilities 
far beyond N-MEMS, e.g. the same approach can be used in bio-
imaging. 

8. CONCLUSION 
We proposed a method where a quartz tuning fork serves as a 
traceable transfer standard to calibrate dynamic stroboscopic scanning 
white light interferometry. Experimental results using off the shelf 
forks indicate the practical feasibility of the proposed method.   
More experimental work is needed to get the calibration uncertainty 
down to the nanometer level repeatability in SSWLI measurements.  
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