21 research outputs found

    Challenges on the interaction of models and policy for pandemic control.

    Get PDF
    The COVID-19 pandemic has seen infectious disease modelling at the forefront of government decision-making. Models have been widely used throughout the pandemic to estimate pathogen spread and explore the potential impact of different intervention strategies. Infectious disease modellers and policymakers have worked effectively together, but there are many avenues for progress on this interface. In this paper, we identify and discuss seven broad challenges on the interaction of models and policy for pandemic control. We then conclude with suggestions and recommendations for the future

    Global impact and cost-effectiveness of one-dose versus two-dose human papillomavirus vaccination schedules: a comparative modelling analysis

    Get PDF
    Background: To eliminate cervical cancer as a public health problem, the World Health Organization had recommended routine vaccination of adolescent girls with two doses of the human papillomavirus (HPV) vaccine before sexual initiation. However, many countries have yet to implement HPV vaccination because of financial or logistical barriers to delivering two doses outside the infant immunisation programme. Methods: Using three independent HPV transmission models, we estimated the long-term health benefits and cost-effectiveness of one-dose versus two-dose HPV vaccination, in 188 countries, under scenarios in which one dose of the vaccine gives either a shorter duration of full protection (20 or 30 years) or lifelong protection but lower vaccine efficacy (e.g. 80%) compared to two doses. We simulated routine vaccination with the 9-valent HPV vaccine in 10-year-old girls at 80% coverage for the years 2021–2120, with a 1-year catch-up campaign up to age 14 at 80% coverage in the first year of the programme. Results: Over the years 2021–2120, one-dose vaccination at 80% coverage was projected to avert 115.2 million (range of medians: 85.1–130.4) and 146.8 million (114.1–161.6) cervical cancers assuming one dose of the vaccine confers 20 and 30 years of protection, respectively. Should one dose of the vaccine provide lifelong protection at 80% vaccine efficacy, 147.8 million (140.6–169.7) cervical cancer cases could be prevented. If protection wanes after 20 years, 65 to 889 additional girls would need to be vaccinated with the second dose to prevent one cervical cancer, depending on the epidemiological profiles of the country. Across all income groups, the threshold cost for the second dose was low: from 1.59 (0.14–3.82) USD in low-income countries to 44.83 (3.75–85.64) USD in high-income countries, assuming one dose confers 30-year protection. Conclusions: Results were consistent across the three independent models and suggest that one-dose vaccination has similar health benefits to a two-dose programme while simplifying vaccine delivery, reducing costs, and alleviating vaccine supply constraints. The second dose may become cost-effective if there is a shorter duration of protection from one dose, cheaper vaccine and vaccination delivery strategies, and high burden of cervical cancer

    PRIME -- Papillomavirus Rapid Interface for Modelling and Economics

    No full text
    PRIME is a static model of HPV vaccination that uses proportional impact to estimate the health impact and cost-effectiveness of HPV vaccination in low- and middle income countries

    Modelling: understanding pandemics and how to control them

    Get PDF
    New disease challenges, societal demands and better or novel types of data, drive innovations in the structure, formulation and analysis of epidemic models. Innovations in modelling can lead to new insights into epidemic processes and better use of available data, yielding improved disease control and stimulating collection of better data and new data types. Here we identify key challenges for the structure, formulation, analysis and use of mathematical models of pathogen transmission relevant to current and future pandemics

    Challenges on the interaction of models and policy for pandemic control

    No full text
    The COVID-19 pandemic has seen infectious disease modelling at the forefront of government decision-making. Models have been widely used throughout the pandemic to estimate pathogen spread and explore the potential impact of different intervention strategies. Infectious disease modellers and policymakers have worked effectively together, but there are many avenues for progress on this interface. In this paper, we identify and discuss seven broad challenges on the interaction of models and policy for pandemic control. We then conclude with suggestions and recommendations for the future
    corecore