13 research outputs found
Characterisation of solid hydrodynamics in a three-phase stirred tank reactor with positron emission particle tracking (PEPT)
It is challenging to measure the hydrodynamics of stirred tank reactors when they contain multiphase flows comprising liquid, gas bubbles and particles. Radioactive particle tracking techniques such as positron emission particle tracking (PEPT) are the only established techniques to determine internal flow behaviour due to the inherent opacity and density of fluid and the vessel walls. The profiles of solids flow are an important tool for robust reactor design and optimisation and offer insight into underlying transport processes and particle–fluid–bubble interactions for applications such as froth flotation. In this work, measurements with PEPT were performed with two tracer particles differing in surface hydrophobicity to characterise the solids hydrodynamics in a baffled vessel agitated with a Rushton turbine. The location data from PEPT were averaged with time to estimate the probability density function (PDF) of particle velocity in individual voxels. The peaks of these voxel distributions were used to produce profiles of solids flow in different azimuthal and horizontal slices. Bimodal vertical velocity distributions were observed in the impeller radial jet which suggest the particles experienced trajectory crossing effects due to inertia. Statistical tests were performed to compare the velocity distributions of the hydrophilic and hydrophobic tracer particles, which indicated similar average flow behaviour in the liquid or pulp phase of the vessel and differences near the air inlet, in the impeller discharge stream and pulp–froth interface. With tracers designed to represent gangue and valuable mineral species, the differences in velocity reveal interactions such as bubble–particle attachment and entrainment
Corvidae Feather Pulp and West Nile Virus Detection
We evaluated cloacal swab, vascular pulp of flight feather, and kidney and spleen pool samples from carcasses of members of the family Corvidae as sources of West Nile virus (WNV). The cloacal swab, kidney and spleen pool, and feather pulp, respectively, were the source of WNV in 38%, 43%, and 77% of the carcasses
Genome-Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low
bone mineral density (BMD) is a major predisposing factor to fracture and is
known to be highly heritable. Site-, gender-, and age-specific genetic effects
on BMD are thought to be significant, but have largely not been considered in
the design of genome-wide association studies (GWAS) of BMD to date. We report
here a GWAS using a novel study design focusing on women of a specific age
(postmenopausal women, age 55–85 years), with either extreme high or low
hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0,
n = 1055, or −4.0 to −1.5,
n = 900), with replication in cohorts of women drawn from
the general population (n = 20,898). The study replicates
21 of 26 known BMD–associated genes. Additionally, we report suggestive
association of a further six new genetic associations in or around the genes
CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and
SOX4, with replication in two independent datasets. A novel
mouse model with a loss-of-function mutation in GALNT3 is also
reported, which has high bone mass, supporting the involvement of this gene in
BMD determination. In addition to identifying further genes associated with BMD,
this study confirms the efficiency of extreme-truncate selection designs for
quantitative trait association studies
Triboelectric charge saturation on single and multiple insulating particles in air and vacuum
Abstract Triboelectric charge transfer is complex and depends on contact properties such as material composition and contact area, as well as environmental factors including humidity, temperature, and air pressure. Saturation surface charge density on particles is inversely dependent on particle size and the number of nearby particles. Here we show that electrical breakdown of air is the primary cause of triboelectric charge saturation on single and multiple electrically insulating particles, which explains the inverse dependence of surface charge density on particle size and number of particles. We combine computational simulations with experiments under controlled humidity and pressure. The results show that the electric field contribution of multiple particles causes electrical breakdown of air, reducing saturation surface charge density for greater numbers of particles. Furthermore, these results show that particles can be discharged in a low pressure environment, yielding opportunities for improved industrial powder flows and dust mitigation from surfaces