12 research outputs found

    N-Acylated and N-Alkylated 2-Aminobenzothiazoles Are Novel Agents That Suppress the Generation of Prostaglandin E2.

    Get PDF
    The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation

    Synthesis, antioxidant properties and neuroprotection of α-phenyl-tert-butylnitrone derived HomoBisNitrones in in vitro and in vivo ischemia models

    Get PDF
    We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs1–9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs1–9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1′Z)-1,1′-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC = 1.24 ± 0.39 μM) as well as necrotic and apoptotic cell death. HBN6 shows strong hydroxyl radical scavenger power (81%), and capacity to decrease superoxide production in human neuroblastoma cell cultures (maximal activity = 95.8 ± 3.6%), values significantly superior to the neuroprotective and antioxidant properties of the parent PBN. The higher neuroprotective ability of HBN6 has been rationalized by means of Density Functional Theory calculations. Calculated physicochemical and ADME properties confirmed HBN6 as a hit-agent showing suitable drug-like properties. Finally, the contribution of HBN6 to brain damage prevention was confirmed in a permanent MCAO setting by assessing infarct volume outcome 48 h after stroke in drug administered experimental animals, which provides evidence of a significant reduction of the brain lesion size and strongly suggests that HBN6 is a potential neuroprotective agent against stroke.We would like to thank Soledad Martinez Montero for the excellent technical assistance. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2015-65586-R to JMC; CTQ2016- 78205-P and CTQ2016-81797-REDC to IF, and NEUROCENTRO-CM S2017/BMD3760 to RMM and DNG), and Camilo José Cela University (UCJC-2018-04) to MJOG. DDI thanks the University of Alcalá and Spanish Ministry of Science, Innovation and Universities for pre-doctoral FPU grants. BCG thanks the Spanish Ministr

    Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents

    Get PDF
    We report the synthesis, anti-inflammatory and antioxidant activities of novel quinoxaline and quinoxaline 1,4-di-N-oxide derivatives. Microwave assisted methods have been used in order to optimize reaction times and to improve the yields. The tested compounds presented important scavenging activities and promising in vitro inhibition of soybean lipoxygenase. Two of the best lipoxygenase inhibitors (compounds 7b and 8f) were evaluated as in vivo anti-inflammatory agents using the carrageenin-induced edema model. One of them (compound 7b) showed important in vivo anti-inflammatory effect (41%) similar to that of indomethacin (47%) used as the reference drug

    Synthesis and Antioxidant Properties of Novel 1,2,3-Triazole-Containing Nitrones

    No full text
    Herein, we report the synthesis and antioxidant capacity of twelve novel 1,2,3-triazole-containing nitrones such as N-(2-(4-aryl-1H-1,2,3-triazol-1-yl)ethylidene)methanamine oxides 8a–f and N-(2-(4-aryl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxides 9a–f, bearing an N-methyl, and an N-t-butyl substituent, respectively, at the nitrogen of the nitrone motif. Nitrones 8 and 9 were studied with regard to their antioxidant ability, as well as their ability to inhibit soybean lypoxygenase (LOX), and their in vitro antioxidant activity. For this, we used three different antioxidant assays, such as that featuring the interaction with the water-soluble azo compound AAPH for the inhibition of lipid peroxidation (LP), the competition with the DMSO for scavenging hydroxyl radicals, and the ABTS–decolorization assay. t-Butyl nitrone 9e, bearing the 2,4-difluorophenyl motif, showed a strong LP inhibitory effect (100%), close to the reference compound Trolox (93%), being the most potent LP inhibitor (LPi) of the whole series of tested nitrones. Nitrones 9d, 9e and 9f, bearing the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, were almost equipotent, and the most potent hydroxyl radical scavengers (~100%), more potent than Trolox (88%), were used as a reference compound. Regarding the LOX inhibition, the most potent inhibitor was the t-butyl substituted nitrone 9f (27 μM), bearing the 4-fluoro-3-methylphenyl motif, being 60-fold less potent than NDGA (0.45 μM), which was used as the standard in this test. The results from the antioxidant determination in the ABTS radical cation (ABTS) decolorization assay were not significant. N-Methyl nitrone 8f, bearing the 4-fluoro-3-methylphenyl motif, was the only promising representative, with a value of 34.3%, followed by nitrone 9f (16%). From the antioxidant analyses, we have identified N-(2-(4-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxide (9f), bearing t-butyl and 4-fluoro-3-methylphenyl motifs in its structure, as the most balanced and potent antioxidant agent among the tested nitrones, as it was the most potent LOX inhibitor (27 μM), an extremely efficient and potent hydroxyl radical scavenger (99.9%), as well as one of the most potent LPi (87%) and ABTS scavengers (16%).The synthetic part of the project was supported by the Medical University of Lodz internal funds (503/3-014-01/503-31-001

    Novel Quinolylnitrones Combining Neuroprotective and Antioxidant Properties

    No full text
    We describe here the preparation, neuroprotective analysis, and antioxidant capacity of 11 novel quinolylnitrones (QN). The neuroprotective analysis of QN1-11 in an oxygen-glucose deprivation model, in primary neuronal cultures, has been determined, allowing us to identify QN6 as a very potent neuroprotective agent, showing significant high value at 0.5 and 10 ÎĽM (86.2%), a result in good agreement with the observed strong hydroxyl radical scavenger of QN6.This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2015-65586-R) to J.M.-C., and the Instituto de Salud Carlos III and cofinancing by the European Development Regional Fund (FEDER) (PI14/ 00705, PI18/0255 and RETICS RD16/0019/0006) to A.A. and (IFI18/00011) to A.E.-P.Peer Reviewe

    Nucleobase-Derived Nitrones: Synthesis and Antioxidant and Neuroprotective Activities in an In Vitro Model of Ischemia–Reperfusion

    No full text
    Herein, we report the synthesis, antioxidant, and neuroprotective properties of some nucleobase-derived nitrones named 9a–i. The neuroprotective properties of nitrones, 9a–i, were measured against an oxygen-glucose-deprivation in vitro ischemia model using human neuroblastoma SH-SY5Y cells. Our results indicate that nitrones, 9a–i, have better neuroprotective and antioxidant properties than a-phenyl-N-tert-butylnitrone (PBN) and are similar to N-acetyl-Lcysteine (NAC), a well-known antioxidant and neuroprotective agent. The nitrones with the highest neuroprotective capacity were those containing purine nucleobases (nitrones 9f, g, B = adenine, theophylline), followed by nitrones with pyrimidine nucleobases with H or F substituents at the C5 position (nitrones 9a, c). All of these possess EC50 values in the range of 1–6 mM and maximal activities higher than 100%. However, the introduction of a methyl substituent (nitrone 9b, B = thymine) or hard halogen substituents such as Br and Cl (nitrones 9d, e, B = 5-Br and 5-Cl uracil, respectively) worsens the neuroprotective activity of the nitrone with uracil as the nucleobase (9a). The effects on overall metabolic cell capacity were confirmed by results on the high anti-necrotic (EC50′s » 2–4 mM) and antioxidant (EC50′s » 0.4–3.5 mM) activities of these compounds on superoxide radical production. In general, all tested nitrones were excellent inhibitors of superoxide radical production in cultured neuroblastoma cells, as well as potent hydroxyl radical scavengers that inhibit in vitro lipid peroxidation, particularly, 9c, f, g, presenting the highest lipoxygenase inhibitory activity among the tested nitrones. Finally, the introduction of two nitrone groups at 9a and 9d (bis-nitronas 9g, i) did not show better neuroprotective effects than their precursor mononitrones. These results led us to propose nitrones containing purine (9f, g) and pyrimidine (9a, c) nucleobases as potential therapeutic agents for the treatment of cerebral ischemia and/or neurodegenerative diseases, leading us to further investigate their effects using in vivo models of these pathologies.The synthetic part of the project was supported by the National Science Centre (synthesis of mononitrones—grant UMO-2013/11/N/NZ7/00723) and by the Medical University of Lodz internal funds (synthesis of bisnitrones—503/3-014-01/503-31-001) to D.G.P. J.M.-C. thanks MINECO (Government of Spain) (SAF2015-65586-R) and J.M-C. and M.J.O.-G. thanks UCJC (NitroStroke project, 2015-12 and NNTEE, 2020-03) for support

    α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: Synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties

    No full text
    We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment. © 2011 American Chemical Society.Peer Reviewe
    corecore