6,923 research outputs found

    Development of the Integrated Model of the Automotive Product Quality Assessment

    Get PDF
    Issues on building an integrated model of the automotive product quality assessment are studied herein basing on widely applicable methods and models of the quality assessment. A conceptual model of the automotive product quality system meeting customer requirements has been developed. Typical characteristics of modern industrial production are an increase in the production dynamism that determines the product properties; a continuous increase in the volume of information required for decision-making, an increased role of knowledge and high technologies implementing absolutely new scientific and technical ideas. To solve the problem of increasing the automotive product quality, a conceptual structural and hierarchical model is offered to ensure its quality as a closed system with feedback between the regulatory, manufacturing, and information modules, responsible for formation of the product quality at all stages of its life cycle. The three module model of the system of the industrial product quality assurance is considered to be universal and to give the opportunity to explore processes of any complexity while solving theoretical and practical problems of the quality assessment and prediction for products for various purposes, including automotive

    Emergent Universe in the Braneworld Scenario

    Get PDF
    According to Padmanabhan's proposal, the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space may result in the acceleration of Universe expansion through the relation ΔV/Δt=NsurNbulk\Delta V/\Delta t = N_{\rm sur}-N_{\rm bulk} where NbulkN_{\rm bulk} and NsurN_{\rm sur} are referred to the degrees of freedom related to the matter and energy content inside the bulk and surface area, respectively \cite{Pad1}. In this paper, we study the dynamical effect of the extrinsic geometrical embedding of an arbitrary four dimensional brane in a higher dimensional bulk space and investigate the corresponding degrees of freedom. Considering the modification of Friedmann equations arising from a general braneworld scenario, we obtain a correction term in Padmanabhan's relation, denoting the number of degrees of freedom related to the extrinsic geometry of the brane embedded in higher dimensional spacetime as ΔV/Δt=NsurNbulkNextr\Delta V /\Delta t=N_{\rm sur}-N_{\rm bulk}-N_{\rm extr} where NextrN_{\rm extr} is referred to the degree of freedom related to the extrinsic geometry of the brane while NsurN_{\rm sur} and NbulkN_{\rm bulk} are as well as before. Finally, we study the validity of the first and second laws of thermodynamics for this general braneworld scenario in the state of thermal equilibrium and in the presence of confined matter fields to the brane with the induced geometric matter fields.Comment: 16 pages, Major revisio

    D-bound and Bekenstein Bound for the Surrounded Vaidya Black Hole

    Full text link
    We study the Vaidya black hole surrounded by the exotic quintessence-like, phantom-like and cosmological constant-like fields by means of entropic considerations. Explicitly, we show that for this thermodynamical system, the requirement for the identification of D-bound and Bekenstein entropy bound can be considered as a thermodynamical criterion by which one can rule out the quintessence-like and phantom-like fields, and prefer the cosmological constant as a vi{\th}able cosmological field.Comment: 12 pages, minor revisio

    Emergent Cosmos in Einstein-Cartan Theory

    Full text link
    Based on the Padmanabhan's proposal, the accelerated expansion of the universe can be driven by the difference between the surface and bulk degrees of freedom in a region of space, described by the relation dV/dt=NsurNbulkdV/dt=N_{sur}-N_{bulk} where NsurN_{sur} and Nbulk=Nem+NdeN_{bulk}=-N_{em}+N_{de} are the degrees of freedom assigned to the surface area and the matter-energy content inside the bulk such that the indexes "em""em" and "de""de" represent energy-momentum and dark energy, respectively. In the present work, the dynamical effect of the Weyssenhoff perfect fluid with intrinsic spin and its corresponding spin degrees of freedom in the framework of Einstein-Cartan (EC) theory are investigated. Based on the modification of Friedmann equations due to the spin-spin interactions, a correction term for the Padmanabhan's original relation dV/dt=Nsur+NemNdedV/dt=N_{sur}+N_{em}-N_{de} including the number of degrees of freedom related to this spin interactions is obtained through the modification in NbulkN_{bulk} term as Nbulk=Nem+Nspin+NdeN_{bulk}=-N_{em}+N_{spin}+N_{de} leading to dV/dt=Nsur+NemNspinNdedV /d t=N_{sur}+N_{em}-N_{spin} -N_{de} in which NspinN_{spin} is the corresponding degrees of freedom related to the intrinsic spin of the matter content of the universe. Moreover, the validity of the unified first law and the generalized second law of thermodynamics for the Einstein-Cartan cosmos are investigated. Finally, by considering the covariant entropy conjecture and the bound resulting from the emergent scenario, a total entropy bound is obtained. Using this bound, it is shown that the for the universe as an expanding thermodynamical system, the total effective Komar energy never exceeds the square of the expansion rate with a factor of 34π\frac{3}{4\pi}.Comment: 12 Pages, Accepted for Publication in Eur. Phys. J.

    Pengaruh Berpikir Kristis Terhadap Kemampuan Siswa Dalam Memecahkan Masalah Matematika (Studi Kasus Di Kelas VII SMP WAHID Hasyim Moga)

    Get PDF
    Mata pelajaran matematika adalah salah satu mata pelajaran yang diajarkan setiap jenjang pendidikan. Matematika di kalangan para pelajar merupakan mata pelajaran yang kurang dipahami, sehingga penguasaan peserta didik terhadap mata pelajaran Matematika menjadi sangat kurang. Upaya untuk mengatasi masalah ini diantaranya dengan memaksimalkan berpikir kritis siswa dan kemampuan memecahkan masalah matematika sehingga siswa dapat memahami konsep yang telah diajarkan oleh guru mata pelajaran matematika.Tujuan penelitian ini adalah untuk mengetahui seberapa besar kemampuan siswa dalam berpikir kritis dan kemampuan siswa dalam memecahkan masalah matematika. Sedang pemecahan maslah matematika adalah suatu kemampuan dalam proses pemecahan masalah dengan cara menggunakan segala informasi pengetahuan dan keterampilan yang sudah ada dan mensintesisnya sehingga tercapai tujuan pemecahan maslah yang diinginkan.Metode yang digunakan dalam penelitian ini adalah pendekatan kuantitatif. Jenis penelitian yang digunakan adalah studi kasus. Populasi dan sampelnya dalam penelitian ini yaitu siswa kelas VII SMP Wahid Hasyim Moga yang berjumlah 66 siswa. Instrumen yang digunakan untuk pengambilan data yaitu dengan tes berpikir kritis dan tes kemampuan memecahkan masalah matematika.Hasil penelitian diperoleh nilai . Sedangkan , ternyata nilai tersebut lebih besar dari nilai ( ), dengan demikian Ho ditolak dan Ha diterima. Sedangkan nilai Korelasi (r) sebesar 0,528 termasuk dalam kriteria cukup. Koefisien determinasi (r 2 ) = 0,528 atau 52,8%, artinya adanya pengaruh antara variabel bebas dan variabel terikat dan sisanya sebesar 47,2% ditentukan oleh faktor lain. Adapun persamaan regresi variabel Y atas variabel X adalah: =36,718+0,568X. Konstanta sebesar 36,718 menyatakan bahwa jika nilai berpikir kritis adalah 0, maka kemampuan memecahkan masalah matematika siswa adalah sebesar 36,718. Koefisien regresi sebesar 0,568 menyatakan bahwa setiap penambahan nilai 1 pada berpikir kritis akan meningkatkan kemampuan memecahkan masalah matematika sebesar 0,568
    corecore