126 research outputs found

    Neutral delay equations from and for population dynamics

    Get PDF
    For a certain class of neutral differential equations it is shown that these equations can serve as population models in the sense that they can be interpreted as special cases or caricatures of the standard Gurtin-MacCamy model for a population structured by age with birth and death rate depending on the total adult population. The delayed logistic equation does not belong to this class but the blowfly equation does. These neutral delay equations can be written as forward systems of an ordinary differential equation and a shift map. There are several quite distinct ways to perform the transformation to a system, either following a method of Hale or following more closely the renewal process. Similarly to the delayed logistic equation, the neutral equation (and the blowfly equation as a special case) exhibit periodic solutions, although only for a restricted range of parameters

    Dual Fronts Propagating into an Unstable State

    Full text link
    The interface between an unstable state and a stable state usually develops a single confined front travelling with constant velocity into the unstable state. Recently, the splitting of such an interface into {\em two} fronts propagating with {\em different} velocities was observed numerically in a magnetic system. The intermediate state is unstable and grows linearly in time. We first establish rigorously the existence of this phenomenon, called ``dual front,'' for a class of structurally unstable one-component models. Then we use this insight to explain dual fronts for a generic two-component reaction-diffusion system, and for the magnetic system.Comment: 19 pages, Postscript, A

    On a Conjecture of Goriely for the Speed of Fronts of the Reaction--Diffusion Equation

    Full text link
    In a recent paper Goriely considers the one--dimensional scalar reaction--diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u) with a polynomial reaction term f(u)f(u) and conjectures the existence of a relation between a global resonance of the hamiltonian system uxx+f(u)=0 u_{xx} + f(u) = 0 and the asymptotic speed of propagation of fronts of the reaction diffusion equation. Based on this conjecture an explicit expression for the speed of the front is given. We give a counterexample to this conjecture and conclude that additional restrictions should be placed on the reaction terms for which it may hold.Comment: 9 pages Revtex plus 4 postcript figure

    A nonhomogeneous boundary value problem in mass transfer theory

    Full text link
    We prove a uniqueness result of solutions for a system of PDEs of Monge-Kantorovich type arising in problems of mass transfer theory. The results are obtained under very mild regularity assumptions both on the reference set Ω⊂Rn\Omega\subset\mathbf{R}^n, and on the (possibly asymmetric) norm defined in Ω\Omega. In the special case when Ω\Omega is endowed with the Euclidean metric, our results provide a complete description of the stationary solutions to the tray table problem in granular matter theory.Comment: 22 pages, 2 figure

    The Speed of Fronts of the Reaction Diffusion Equation

    Full text link
    We study the speed of propagation of fronts for the scalar reaction-diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u)\, with f(0)=f(1)=0f(0) = f(1) = 0. We give a new integral variational principle for the speed of the fronts joining the state u=1u=1 to u=0u=0. No assumptions are made on the reaction term f(u)f(u) other than those needed to guarantee the existence of the front. Therefore our results apply to the classical case f>0f > 0 in (0,1)(0,1), to the bistable case and to cases in which ff has more than one internal zero in (0,1)(0,1).Comment: 7 pages Revtex, 1 figure not include

    Steady states in a structured epidemic model with Wentzell boundary condition

    Get PDF
    We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass, hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for example Wolbachia in a mosquito population. Therefore the (infinite dimensional) nonlinearity arises in the recruitment term. First we establish global existence of solutions and the Principle of Linearised Stability for our model. Then, in our main result, we formulate simple conditions, which guarantee the existence of non-trivial steady states of the model. Our method utilizes an operator theoretic framework combined with a fixed point approach. Finally, in the last section we establish a sufficient condition for the local asymptotic stability of the positive steady state

    Renormalization Group Theory And Variational Calculations For Propagating Fronts

    Full text link
    We study the propagation of uniformly translating fronts into a linearly unstable state, both analytically and numerically. We introduce a perturbative renormalization group (RG) approach to compute the change in the propagation speed when the fronts are perturbed by structural modification of their governing equations. This approach is successful when the fronts are structurally stable, and allows us to select uniquely the (numerical) experimentally observable propagation speed. For convenience and completeness, the structural stability argument is also briefly described. We point out that the solvability condition widely used in studying dynamics of nonequilibrium systems is equivalent to the assumption of physical renormalizability. We also implement a variational principle, due to Hadeler and Rothe, which provides a very good upper bound and, in some cases, even exact results on the propagation speeds, and which identifies the transition from ` linear'- to ` nonlinear-marginal-stability' as parameters in the governing equation are varied.Comment: 34 pages, plain tex with uiucmac.tex. Also available by anonymous ftp to gijoe.mrl.uiuc.edu (128.174.119.153), file /pub/front_RG.tex (or .ps.Z

    Pushed traveling fronts in monostable equations with monotone delayed reaction

    Full text link
    We study the existence and uniqueness of wavefronts to the scalar reaction-diffusion equations ut(t,x)=Δu(t,x)−u(t,x)+g(u(t−h,x)),u_{t}(t,x) = \Delta u(t,x) - u(t,x) + g(u(t-h,x)), with monotone delayed reaction term g:R+→R+g: \R_+ \to \R_+ and h>0h >0. We are mostly interested in the situation when the graph of gg is not dominated by its tangent line at zero, i.e. when the condition g(x)≤g′(0)x,g(x) \leq g'(0)x, x≥0x \geq 0, is not satisfied. It is well known that, in such a case, a special type of rapidly decreasing wavefronts (pushed fronts) can appear in non-delayed equations (i.e. with h=0h=0). One of our main goals here is to establish a similar result for h>0h>0. We prove the existence of the minimal speed of propagation, the uniqueness of wavefronts (up to a translation) and describe their asymptotics at −∞-\infty. We also present a new uniqueness result for a class of nonlocal lattice equations.Comment: 17 pages, submitte

    Evolutionary dynamics of Lewis signaling games: signaling systems vs. partial pooling

    Full text link
    Transfer of information between senders and receivers, of one kind or another, is essential to all life. David Lewis introduced a game theoretic model of the simplest case, where one sender and one receiver have pure common interest. How hard or easy is it for evolution to achieve information transfer in Lewis signaling?. The answers involve surprising subtleties. We discuss some if these in terms of evolutionary dynamics in both finite and infinite populations, with and without mutation
    • …
    corecore