909 research outputs found

    Superconducting Gap and Pseudogap in Bi-2212

    Full text link
    We present results of Raman scattering experiments in differently doped Bi-2212 single crystals. Below Tc the spectra show pair-breaking features in the whole doping range. The low frequency power laws confirm the existence of a dx2y2d_{x^2-y^2}-wave order parameter. In the normal state between Tc and T* = 200K we find evidence for a pseudogap in B2g symmetry. Upon doping its effect on the spectra decreases while its energy scale appears to be unchanged.Comment: 2 pages, 1 EPS figure; LT22 Proceedings to appear in Physica

    Real Time Evolution in Quantum Many-Body Systems With Unitary Perturbation Theory

    Full text link
    We develop a new analytical method for solving real time evolution problems of quantum many-body systems. Our approach is a direct generalization of the well-known canonical perturbation theory for classical systems. Similar to canonical perturbation theory, secular terms are avoided in a systematic expansion and one obtains stable long-time behavior. These general ideas are illustrated by applying them to the spin-boson model and studying its non-equilibrium spin dynamics.Comment: Final version as accepted for publication in Phys. Rev. B (4 pages, 3 figures

    Entanglement dualities in supersymmetry

    Get PDF
    We derive a general relation between the bosonic and fermionic entanglement in the ground states of supersymmetric quadratic Hamiltonians. For this, we construct canonical identifications between bosonic and fermionic subsystems. Our derivation relies on a unified framework to describe both, bosonic and fermionic Gaussian states in terms of so-called linear complex structures JJ. The resulting dualities apply to the full entanglement spectrum between the bosonic and the fermionic systems, such that the von Neumann entropy and arbitrary Renyi entropies can be related. We illustrate our findings in one and two-dimensional systems, including the paradigmatic Kitaev honeycomb model. While typically SUSY preserves features like area law scaling of the entanglement entropies on either side, we find a peculiar phenomenon, namely, an amplified scaling of the entanglement entropy ("super area law") in bosonic subsystems when the dual fermionic subsystems develop almost maximally entangled modes.Comment: 20 pages, 6 figures. v2: Update to published version, typos correcte

    Nonequilibrium Spin Dynamics in the Ferromagnetic Kondo Model

    Full text link
    Motivated by recent experiments on molecular quantum dots we investigate the relaxation of pure spin states when coupled to metallic leads. Under suitable conditions these systems are well described by a ferromagnetic Kondo model. Using two recently developed theoretical approaches, the time-dependent numerical renormalization group and an extended ow equation method, we calculate the real-time evolution of a Kondo spin into its partially screened steady state. We obtain exact analytical results which agree well with numerical implementations of both methods. Analytical expressions for the steady state magnetization and the dependence of the long-time relaxation on microscopic parameters are established. We find the long-time relaxation process to be much faster in the regime of anisotropic Kondo couplings. The steady state magnetization is found to deviate significantly from its thermal equilibrium value.Comment: 4 pages, 3 figures, final version as accepted by Physical Review Letter

    Smart Institutions for Smart Cities

    Full text link
    Smart cities employ creativity of the population for innovations supporting social and economic development. In this context, this paper explores the role of framework conditions on special supply effects of university hospitals, which can invite further research institutions for intense collaboration, thereby stimulating innovations. The case study, comparing a hospital in Russia with one in Germany, is based on the concept of the employment multiplier. The results show that exogenously given, but, more importantly, also modifiable framework conditions lead to large differences regarding the employment multiplier. Thus, it should be the concern of smart cities to make smart use of their institutions, such as university hospitals, by adjusting the conditions, under which they are operating. © 2018 Institute of Physics Publishing. All rights reserved

    Raman scattering evidence for a cascade-like evolution of the charge-density-wave collective amplitude mode

    Full text link
    The two-dimensional rare-earth tri-tellurides undergo a unidirectional charge-density-wave (CDW) transition at high temperature and, for the heaviest members of the series, a bidirectional one at low temperature. Raman scattering experiments as a function of temperature on DyTe3_3 and on LaTe3_3 at 6 GPa provide a clear-cut evidence for the emergence of the respective collective CDW amplitude excitations. In the unidirectional CDW phase, we surprisingly discover that the amplitude mode develops as a succession of two mean-field, BCS-like transitions in different temperature ranges

    Random pure Gaussian states and Hawking radiation

    Full text link
    A black hole evaporates by Hawking radiation. Each mode of that radiation is thermal. If the total state is nevertheless to be pure, modes must be entangled. Estimating the minimum size of this entanglement has been an important outstanding issue. We develop a new theory of constrained random symplectic transformations, based on that the total state is pure and Gaussian with given marginals. In the random constrained symplectic model we then compute the distribution of mode-mode correlations, from which we bound mode-mode entanglement. Modes of frequency much larger than kBTH(t)\frac{k_B T_{H}(t)}{\hbar} are not populated at time tt and drop out of the analysis. Among the other modes find that correlations and hence entanglement between relatively thinly populated modes (early-time high-frequency modes and/or late modes of any frequency) to be strongly suppressed. Relatively highly populated modes (early-time low-frequency modes) can on the other hand be strongly correlated, but a detailed analysis reveals that they are nevertheless also weakly entangled. Our analysis hence establishes that restoring unitarity after a complete evaporation of a black hole does not require strong quantum entanglement between any pair of Hawking modes. Our analysis further gives exact general expressions for the distribution of mode-mode correlations in random, pure, Gaussian states with given marginals, which may have applications beyond black hole physics.Comment: Revised version, with supplementary material. Main paper 6 pages, 3 figures. Supplementary material 29 pages, 1 figur

    Cluster counting: The Hoshen-Kopelman algorithm vs. spanning tree approaches

    Full text link
    Two basic approaches to the cluster counting task in the percolation and related models are discussed. The Hoshen-Kopelman multiple labeling technique for cluster statistics is redescribed. Modifications for random and aperiodic lattices are sketched as well as some parallelised versions of the algorithm are mentioned. The graph-theoretical basis for the spanning tree approaches is given by describing the "breadth-first search" and "depth-first search" procedures. Examples are given for extracting the elastic and geometric "backbone" of a percolation cluster. An implementation of the "pebble game" algorithm using a depth-first search method is also described.Comment: LaTeX, uses ijmpc1.sty(included), 18 pages, 3 figures, submitted to Intern. J. of Modern Physics
    corecore