1,471 research outputs found
On Languages Accepted by P/T Systems Composed of joins
Recently, some studies linked the computational power of abstract computing
systems based on multiset rewriting to models of Petri nets and the computation
power of these nets to their topology. In turn, the computational power of
these abstract computing devices can be understood by just looking at their
topology, that is, information flow.
Here we continue this line of research introducing J languages and proving
that they can be accepted by place/transition systems whose underlying net is
composed only of joins. Moreover, we investigate how J languages relate to
other families of formal languages. In particular, we show that every J
language can be accepted by a log n space-bounded non-deterministic Turing
machine with a one-way read-only input. We also show that every J language has
a semilinear Parikh map and that J languages and context-free languages (CFLs)
are incomparable
Effective quantum gravity observables and locally covariant QFT
Perturbative algebraic quantum field theory (pAQFT) is a mathematically
rigorous framework that allows to construct models of quantum field theories on
a general class of Lorentzian manifolds. Recently this idea has been applied
also to perturbative quantum gravity, treated as an effective theory. The
difficulty was to find the right notion of observables that would in an
appropriate sense be diffeomorphism invariant. In this article I will outline a
general framework that allows to quantize theories with local symmetries (this
includes infinitesimal diffeomorphism transformations) with the use of the BV
(Batalin-Vilkovisky) formalism. This approach has been successfully applied to
effective quantum gravity in a recent paper by R. Brunetti, K. Fredenhagen and
myself. In the same paper we also proved perturbative background independence
of the quantized theory, which is going to be discussed in the present work as
well.Comment: 16 pages, based on a plenary talk given at the 14th Marcel Grossmann
Meeting in Rome (July 2015
Prognostic impact of systemic inflammatory diseases in elderly patients with congestive heart failure
Background and aims: Inflammation is part of the pathophysiology of congestive heart failure (CHF). However, little is known about the impact of the presence of systemic inflammatory disease (SID), defined as inflammatory syndrome with constitutional symptoms and involvement of at least two organs as co-morbidity on the clinical course and prognosis of patients with CHF. Methods and results: This is an analysis of all 622 patients included in TIME-CHF. After an 18 months follow-up, outcomes of patients with and without SID were compared. Primary endpoint was all-cause hospitalization free survival. Secondary endpoints were overall survival and CHF hospitalization free survival. At baseline, 38 patients had history of SID (6.1%). These patients had higher N-terminal pro brain natriuretic peptide and worse renal function than patients without SID. SID was a risk factor for adverse outcome [primary endpoint: hazard ratio (HR) = 1.73 (95% confidence interval: 1.18-2.55, P = 0.005); survival: HR = 2.60 (1.49-4.55, P = 0.001); CHF hospitalization free survival: HR = 2.3 (1.45-3.65, P < 0.001)]. In multivariate models, SID remained the strongest independent risk factor for survival and CHF hospitalization free survival. Conclusions: In elderly patients with CHF, SID is independently accompanied with adverse outcome. Given the increasing prevalence of SID in the elderly population, these findings are clinically important for both risk stratification and patient managemen
An Analytical and Numerical Study of Optimal Channel Networks
We analyze the Optimal Channel Network model for river networks using both
analytical and numerical approaches. This is a lattice model in which a
functional describing the dissipated energy is introduced and minimized in
order to find the optimal configurations. The fractal character of river
networks is reflected in the power law behaviour of various quantities
characterising the morphology of the basin. In the context of a finite size
scaling Ansatz, the exponents describing the power law behaviour are calculated
exactly and show mean field behaviour, except for two limiting values of a
parameter characterizing the dissipated energy, for which the system belongs to
different universality classes. Two modified versions of the model,
incorporating quenched disorder are considered: the first simulates
heterogeneities in the local properties of the soil, the second considers the
effects of a non-uniform rainfall. In the region of mean field behaviour, the
model is shown to be robust to both kinds of perturbations. In the two limiting
cases the random rainfall is still irrelevant, whereas the heterogeneity in the
soil properties leads to new universality classes. Results of a numerical
analysis of the model are reported that confirm and complement the theoretical
analysis of the global minimum. The statistics of the local minima are found to
more strongly resemble observational data on real rivers.Comment: 27 pages, ps-file, 11 Postscript figure
Geometry of River Networks II: Distributions of Component Size and Number
The structure of a river network may be seen as a discrete set of nested
sub-networks built out of individual stream segments. These network components
are assigned an integral stream order via a hierarchical and discrete ordering
method. Exponential relationships, known as Horton's laws, between stream order
and ensemble-averaged quantities pertaining to network components are observed.
We extend these observations to incorporate fluctuations and all higher moments
by developing functional relationships between distributions. The relationships
determined are drawn from a combination of theoretical analysis, analysis of
real river networks including the Mississippi, Amazon and Nile, and numerical
simulations on a model of directed, random networks. Underlying distributions
of stream segment lengths are identified as exponential. Combinations of these
distributions form single-humped distributions with exponential tails, the sums
of which are in turn shown to give power law distributions of stream lengths.
Distributions of basin area and stream segment frequency are also addressed.
The calculations identify a single length-scale as a measure of size
fluctuations in network components. This article is the second in a series of
three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR
Cosmological perturbation theory and quantum gravity
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well
Unified View of Scaling Laws for River Networks
Scaling laws that describe the structure of river networks are shown to
follow from three simple assumptions. These assumptions are: (1) river networks
are structurally self-similar, (2) single channels are self-affine, and (3)
overland flow into channels occurs over a characteristic distance (drainage
density is uniform). We obtain a complete set of scaling relations connecting
the exponents of these scaling laws and find that only two of these exponents
are independent. We further demonstrate that the two predominant descriptions
of network structure (Tokunaga's law and Horton's laws) are equivalent in the
case of landscapes with uniform drainage density. The results are tested with
data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added
Local minimal energy landscapes in river networks
The existence and stability of the universality class associated to local
minimal energy landscapes is investigated. Using extensive numerical
simulations, we first study the dependence on a parameter of a partial
differential equation which was proposed to describe the evolution of a rugged
landscape toward a local minimum of the dissipated energy. We then compare the
results with those obtained by an evolution scheme based on a variational
principle (the optimal channel networks). It is found that both models yield
qualitatively similar river patterns and similar dependence on . The
aggregation mechanism is however strongly dependent on the value of . A
careful analysis suggests that scaling behaviors may weakly depend both on
and on initial condition, but in all cases it is within observational
data predictions. Consequences of our resultsComment: 12 pages, 13 figures, revtex+epsfig style, to appear in Phys. Rev. E
(Nov. 2000
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
Acute-phase response patterns in isolated hepatic perfusion with tumour necrosis factor α (TNF-α) and melphalan in patients with colorectal liver metastases
Background. In this study, we have evaluated hepatotoxicity, secondary cytokine production and hepatic acute-phase response (APR) in patients who underwent isolated hepatic perfusion (IHP) with tumour necrosis factor (TNF) α and melphalan for irresectable colorectal liver metastases. Design. An extracorporeal veno-venous bypass was used to shunt blood from the lower body and intestines to the heart. Inflow catheters were placed in the hepatic artery and portal vein, and an outflow catheter in the inferior caval vein. The liver was perfused for 60 min with 0.4 mg of TNF-α plus 1 mg kg-1 melphalan (IHP(TM) group, n = 6) or 1 mg kg-1 melphalan (IHP(M) group, n = 3). The liver was washed with macrodex before restoring vascular continuity. Results. After the washout procedure, a TNF-α peak (169 ± 38 pg mL-1) was demons
- …
