50 research outputs found

    Estimation of affine transformations directly from tomographic projections in two and three dimensions

    Get PDF
    This paper presents a new approach to estimate two- and three-dimensional affine transformations from tomographic projections. Instead of estimating the deformation from the reconstructed data, we introduce a method which works directly in the projection domain, using parallel and fan beam projection geometries. We show that any affine deformation can be analytically compensated, and we develop an efficient multiscale estimation framework based on the normalized cross correlation. The accuracy of the approach is verified using simulated and experimental data, and we demonstrate that the new method needs less projection angles and has a much lower computational complexity as compared to approaches based on the standard reconstruction technique

    Calibration and evaluation of optical systems for full-field strain measurement

    Get PDF
    The design and testing of a reference material for the calibration of optical systems for strain measurement is described, together with the design and testing of a standardized test material that allows the evaluation and assessment of fitness for purpose of the most sophisticated optical system for strain measurement. A classification system for the steps in the measurement process is also proposed and allows the development of a unified approach to diagnostic testing of components or sub-systems in an optical system for strain measurement based on any optical technique. The results described arise from a European study known as SPOTS whose objectives were to begin to fill the gap caused by a lack of standards

    Steps Towards Industrial Validation Experiments

    Get PDF
    Imaging systems for measuring surface displacement and strain fields such as stereoscopic Digital Image Correlation (DIC) are increasingly used in industry to validate model simulations. Recently, CEN has published a guideline for validation that is based on image decomposition to compare predicted and measured data fields. The CEN guideline was evaluated in an inter-laboratory study that demonstrated its usefulness in laboratory environments. This paper addresses the incorporation of the CEN methodology into an industrial environment and reports progress of the H2020 Clean Sky 2 project MOTIVATE. First, while DIC is a well-established technique, the estimation of its measurement uncertainty in an industrial environment is still being discussed, as the current approach to rely on the calibration uncertainty is insufficient. Second, in view of the push towards virtual testing it is important to harvest existing data in the course of the V&V activities before requesting a dedicated validation experiment, specifically at higher levels of the test pyramid. Finally, it is of uttermost importance to ensure compatibility and comparability of the simulation and measurement data so as to optimize the test matrix for maximum reliability and credibility of the simulations and a quantification of the model quality

    Validating out of the box: Identifying a campaign of physical tests

    No full text
    The extent of the domain over which a model validation demonstrates the reliability of a model is discussed and a simple schematic diagram is used to illustrate the domain. The schematic diagram can also be used to optimise the physical test campaign required to demonstrate the reliability of a model for its context of use. The connections to existing validation approaches and procedures are discussed. </jats:p
    corecore