20 research outputs found

    Flow cytometry analysis of the microbiota associated with the midguts of vector mosquitoes

    Get PDF
    Background: The scientific interest to understand the function and structure of the microbiota associated with the midgut of mosquito disease vectors is increasing. The advancement of such a knowledge has encountered challenges and limitations associated with conventional culture-based and PCR techniques. Methods: Flow cytometry (FCM) combined with various cell marking dyes have been successfully applied in the field of ecological microbiology to circumvent the above shortcomings. Here, we describe FCM technique coupled with live/dead differential staining dyes SYBR Green I (SGI) and Propidium Iodide (PI) to quantify and study other essential characteristics of the mosquito gut microbiota. Results: A clear discrimination between cells and debris, as well as between live and dead cells was achieved when the midgut homogenate was subjected to staining with 5 x 103 dilution of the SGI and 30 mu M concentration of the PI. Reproducibly, FCM event collections produced discrete populations including non-fluorescent cells, SYBR positive cells, PI fluorescing cells and cells that fluoresce both in SYBR and PI, all these cell populations representing, respectively, background noise, live bacterial, dead cells and inactive cells with partial permeability to PI. The FCM produced a strong linear relationship between cell counts and their corresponding dilution factors (R-2 = 0.987), and the technique has a better precision compared to qRT-PCR. The FCM count of the microbiota reached a peak load at 18 h post-feeding and started declining at 24 h. The present FCM technique also successfully applied to quantify bacterial cells in fixed midgut samples that were homogenized in 4 % PFA. Conclusion: The FCM technique described here offers enormous potential and possibilities of integration with advanced molecular biochemical techniques for the study of the microbiota community in disease vector mosquitoes

    The effect of silencing immunity related genes on longevity in a naturally occurring Anopheles arabiensis mosquito population from southwest Ethiopia

    Get PDF
    Background: Vector control remains the most important tool to prevent malaria transmission. However, it is now severely constrained by the appearance of physiological and behavioral insecticide resistance. Therefore, the development of new vector control tools is warranted. Such tools could include immunization of blood hosts of vector mosquitoes with mosquito proteins involved in midgut homeostasis (anti-mosquito vaccines) or genetic engineering of mosquitoes that can drive population-wide knockout of genes producing such proteins to reduce mosquito lifespan and malaria transmission probability. Methods: To achieve this, candidate genes related to midgut homeostasis regulation need to be assessed for their effect on mosquito survival. Here, different such candidate genes were silenced through dsRNA injection in the naturally occurring Anopheles arabiensis mosquitoes and the effect on mosquito survival was evaluated. Results: Significantly higher mortality rates were observed in the mosquitoes silenced for FN3D1 (AARA003032), FN3D3 (AARA007751) and GPRGr9 (AARA003963) genes as compared to the control group injected with dsRNA against a non-related bacterial gene (LacZ). This observed difference in mortality rate between the candidate genes and the control disappeared when gene-silenced mosquitoes were treated with antibiotic mixtures, suggesting that gut microbiota play a key role in the observed reduction of mosquito survival. Conclusions: We demonstrated that interference with the expression of the FN3D1, FN3D3 or GPRGr9 genes causes a significant reduction of the longevity of An. arabiensis mosquito in the wild

    Ugandan stakeholder hopes and concerns about gene drive mosquitoes for malaria control:New directions for gene drive risk governance

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this record. Availability of data and materials: The datasets generated during and/or analyzed during the current study are available in the UK DATA SERVICE repository, https://ukdataservice.ac.uk/. The datasets during and/or analyzed during the current study are also available from the corresponding author on reasonable request.Background: The African Union’s High-Level Panel on Emerging Technologies identified gene drive mosquitoes as a priority technology for malaria elimination. The first field trials are expected in 5–10 years in Uganda, Mali or Burkina Faso. In preparation, regional and international actors are developing risk governance guidelines which will delineate the framework for identifying and evaluating risks. Scientists and bioethicists have called for African stakeholder involvement in these developments, arguing the knowledge and perspectives of those people living in malaria-afflicted countries is currently missing. However, few African stakeholders have been involved to date, leaving a knowledge gap about the local social-cultural as well as ecological context in which gene drive mosquitoes will be tested and deployed. This study investigates and analyses Ugandan stakeholders’ hopes and concerns about gene drive mosquitoes for malaria control and explores the new directions needed for risk governance. Methods: This qualitative study draws on 19 in-depth semi-structured interviews with Ugandan stakeholders in 2019. It explores their hopes for the technology and the risks they believed pertinent. Coding began at a workshop and continued through thematic analysis. Results: Participants’ hopes and concerns for gene drive mosquitoes to address malaria fell into three themes: (1) ability of gene drive mosquitoes to prevent malaria infection; (2) impacts of gene drive testing and deployment; and, (3) governance. Stakeholder hopes fell almost exclusively into the first theme while concerns were spread across all three. The study demonstrates that local stakeholders are able and willing to contribute relevant and important knowledge to the development of risk frameworks. Conclusions: International processes can provide high-level guidelines, but risk decision-making must be grounded in the local context if it is to be robust, meaningful and legitimate. Decisions about whether or not to release gene drive mosquitoes as part of a malaria control programme will need to consider the assessment of both the risks and the benefits of gene drive mosquitoes within a particular social, political, ecological, and technological context. Just as with risks, benefits—and importantly, the conditions that are necessary to realize them—must be identified and debated in Uganda and its neighbouring countries.British Academ

    Similar trends of susceptibility in Anopheles arabiensis and Anopheles pharoensis to Plasmodium vivax infection in Ethiopia

    Get PDF
    Background: Around half of the global population is living in areas at risk of malaria infection. Plasmodium vivax malaria has become increasingly prevalent and responsible for a high health and socio-economic burden in Ethiopia. The availability of gametocyte carriers and mosquito species susceptible to P. vivax infection are vital for malaria transmission. Determining the susceptibility of vector species to parasite infection in space and time is important in vector control programs. This study assesses the susceptibility of Anopheles arabiensis, An. pharoensis and An. coustani group to Plasmodium vivax infection in Ethiopia. Methods: Larvae of An. arabiensis, An. pharoensis and An. coustani group were collected from an array of breeding sites and reared to adult under controlled conditions. Batches of adult female mosquitoes of the three species were allowed to feed in parallel on the same infected blood with gametocytes drawn from Plasmodium vivax infected patients by Direct Membrane Feeding Assays (DMFA). Fed mosquitoes were kept in an incubator under controlled laboratory conditions. Seven days after each feeding assay, mosquitoes were dissected for midgut oocyst microscopy and enumeration. Data were analysed using R statistical software package version 3.1.0. Results: Over all, 8,139 adult female mosquitoes were exposed to P. vivax infection. Of the exposed mosquitoes 16. 64 % (95 % CI: 1,354-8,139) were properly fed and survived until dissection. The infection rate in An. arabiensis and An. pharoensis was 31.72 % (95 % CI: 28.35-35.08) and 28.80 % (95 % CI: 25.31-32.28), respectively. The intensity of infection for An. arabiensis and An. pharoensis was 2.5 (95 % CI: 1.9-3.2) and 1.4 (95 % CI: 1.1-1.8), respectively. Gametocyte density was positively correlated to infection rate and intensity of infection in An. arabiensis as well as An. pharoensis. No An. coustani group mosquitoes were found infected, though almost four hundred mosquitoes were successfully fed and dissected. All groups received blood from the same infected blood source containing gametocytes in parallel. There was no significant difference in susceptibility rates between An. arabiensis and An. pharoensis (P = 0.215). Conclusions: Anopheles arabiensis and An. pharoensis showed similar susceptibility to P. vivax infection. However, An. coustani group was not permissive for the development of P. vivax parasites

    Spatial distribution of Glossina sp. and Trypanosoma sp. in south-western Ethiopia

    Get PDF
    Background Accurate information on the distribution of the tsetse fly is of paramount importance to better control animal trypanosomosis. Entomological and parasitological surveys were conducted in the tsetse belt of south-western Ethiopia to describe the prevalence of trypanosomosis (PoT), the abundance of tsetse flies (AT) and to evaluate the association with potential risk factors. Methods The study was conducted between 2009 and 2012. The parasitological survey data were analysed by a random effects logistic regression model, whereas the entomological survey data were analysed by a Poisson regression model. The percentage of animals with trypanosomosis was regressed on the tsetse fly count using a random effects logistic regression model. Results The following six risk factors were evaluated for PoT (i) altitude: significant and inverse correlation with trypanosomosis, (ii) annual variation of PoT: no significant difference between years, (iii) regional state: compared to Benishangul-Gumuz (18.0 %), the three remaining regional states showed significantly lower PoT, (iv) river system: the PoT differed significantly between the river systems, (iv) sex: male animals (11.0 %) were more affected than females (9.0 %), and finally (vi) age at sampling: no difference between the considered classes. Observed trypanosome species were T. congolense (76.0 %), T. vivax (18.1 %), T. b. brucei (3.6 %), and mixed T. congolense/vivax (2.4 %). The first four risk factors listed above were also evaluated for AT, and all have a significant effect on AT. In the multivariable model only altitude was retained with AT decreasing with increasing altitude. Four different Glossina species were identified i.e. G. tachinoides (52.0 %), G. pallidipes (26.0 %), G.morsitans submorsitans (15.0 %) and G. fuscipes fuscipes (7.0 %). Significant differences in catches/trap/day between districts were observed for each species. No association could be found between the tsetse fly counts and trypanosomosis prevalence. Conclusions Trypanosomosis remains a constraint to livestock production in south-western Ethiopia. Four Glossina and three Trypanosoma species were observed. Altitude had a significant impact on AT and PoT. PoT is not associated with AT, which could be explained by the importance of mechanical transmission. This needs to be investigated further as it might jeopardize control strategies that target the tsetse fly population

    Stability of the effect of silencing fibronectin type III domain-protein 1 (FN3D1) gene on Anopheles arabiensis reared under different breeding site conditions

    No full text
    Background Malaria vector mosquitoes acquire midgut microbiota primarily from their habitat. The homeostasis of these microbial communities plays an essential role in the mosquito longevity, the most essential factor in the mosquito vectorial capacity. Our recent study revealed that silencing genes involved in regulation of the midgut homeostasis including FN3D1, FN3D3 and GPRGr9 reduced the survival of female adult Anopheles arabiensis mosquitoes. In the present study, we investigate the stability of the gene silencing efficiency of mosquitoes reared in three different breeding conditions representing distinct larval habitat types: town brick pits in Jimma, flood pools in the rural land of Asendabo and roadside pools in Wolkite. Methods First-instar larvae of An. arabiensis mosquitoes were reared separately using water collected from the three breeding sites. The resulting adult females were micro-injected with dsRNA targeting the FN3D1 gene (AARA003032) and their survival was monitored. Control mosquitoes were injected with dsRNA Lacz. In addition, the load of midgut microbiota of these mosquitoes was determined using flow cytometry. Results Survival of naive adult female mosquitoes differed between the three sites. Mosquitoes reared using water collected from brick pits and flood pools survived longer than mosquitoes reared using water collected from roadside. However, the FN3D1 gene silencing effect on survival did not differ between the three sites. Conclusions The present study revealed that the efficacy of FN3D1 gene silencing is not affected by variation in the larval habitat. Thus, silencing this gene has potential for application throughout sub-Saharan Africa
    corecore