12 research outputs found

    Progress towards Every Newborn Action Plan (ENAP) implementation in Iran: obstacles and bottlenecks

    Get PDF
    Background: Neonatal mortality accounts for more than 47 of deaths among children under five globally but proper care at and around the time of birth could prevent about two-thirds of these deaths. The Every Newborn Action Plan (ENAP) offers a plan and vision to improve and achieve equitable and high-quality care for mothers and newborns. We applied the bottleneck analysis tool offered by ENAP to identify obstacles and bottlenecks hindering the scale-up of newborn care across seven health system building blocks. Methods: We applied the every newborn bottleneck analysis tool to identify obstacles hindering the scale-up of newborn care across seven health system building blocks. We used qualitative methods to collect data from five medical universities and their corresponding hospitals in three provinces. We also interviewed other national experts, key informants, and stakeholders in neonatal care. In addition, we reviewed and qualitatively analyzed the performance report of neonatal care and services from 16 medical universities around the country. Results: We identified many challenges and bottlenecks in the scale-up of newborn care in Iran. The major obstacles included but were not limited to the lack of a single leading and governing entity for newborn care, insufficient financial resources for neonatal care services, insufficient number of skilled health professionals, and inadequate patient transfer. Conclusions: To address identified bottlenecks in neonatal health care in Iran, some of our recommendations were as follows: establishing a single national authorizing and leading entity, allocating specific budget to newborn care, matching high-quality neonatal health care providers to the needs of all urban and rural areas, maintaining clear policies on the distribution of NICUs to minimize the need for patient transfer, and using the available and reliable private sector NICU ambulances for safe patient transfer. © 2021, The Author(s)

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from −90% to +30%, were reported in many countries following early COVID-19 pandemic response measures (‘lockdowns’). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95–0.98, P value <0.0001), second (0.96, 0.92–0.99, 0.03) and third (0.97, 0.94–1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96–1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88–1.14, 0.98), third (0.99, 0.88–1.12, 0.89) and fourth (1.01, 0.87–1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02–1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03–1.15, 0.002), third (1.10, 1.03–1.17, 0.003) and fourth (1.12, 1.05–1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries

    Get PDF
    Funding Information: M.B.A. holds a Tier 2 Canada Research Chair in the Developmental Origins of Chronic Disease at the University of Manitoba and is a Fellow in the Canadian Institutes for Advanced Research (CIFAR) Humans and the Microbiome Program. Her effort on this project was partly supported by HDR UK and ICODA. K.K.C.M. declares support from The Innovation and Technology Commission of the Hong Kong Special Administrative Region Government, and Hong Kong Research Grants Council Collaborative Research Fund Coronavirus Disease (COVID-19) and Novel Infectious Disease Research Exercise (Ref: C7154-20G) and grants from C W Maplethorpe Fellowship, National Institute of Health Research UK, European Commission Framework Horizon 2020 and has consulted for IQVIA Ltd. A.S. is supported by ICODA and HDR UK, and has received a research grant from HDR UK to the BREATHE Hub. He participates on the Scottish and UK Government COVID-19 Advisory Committees, unremunerated. S.J.S. is supported by a Wellcome Trust Clinical Career Development Fellowship (209560/Z/17/Z) and HDR UK, and has received personal fees from Hologic and Natera outside the submitted work. D.B. is supported by a National Health and Medical Research Council (Australia) Investigator Grant (GTN1175744). I.C.K.W. declares support from The Innovation and Technology Commission of the Hong Kong Special Administrative Region Government, and Hong Kong Research Grants Council Collaborative Research Fund Coronavirus Disease (COVID-19) and Novel Infectious Disease Research Exercise (Ref: C7154-20G), and grants from Hong Kong Research Grant Council, National Institute of Health Research UK, and European Commission Framework Horizon 2020. H.Z. is supported by a UNSW Scientia Program Award and reports grants from European Commission Framework Horizon 2020, Icelandic Centre for Research, and Australia’s National Health and Medical Research Council. H.Z. was an employee of the UNSW Centre for Big Data Research in Health, which received funding from AbbVie Australia to conduct research, unrelated to the current study. I.I.A.A., C.D.A., K.A., A.I.A., L.C., S.S., G.E.-G., O.W.G., L. Huicho, S.H., A.K., K.L., V.N., I.P., N.R.R., T.R., T.A.H.R., V.L.S., E.M.S., L.T., R.W. and H.Z. received funding from HDRUK (grant #2020.106) to support data collection for the iPOP study. K.H., R.B., S.O.E., A.R.-P. and J.H. receive salary from ICODA. M.B. received trainee funding from HDRUK (grant #2020.106). J.E.M. received trainee funding from HDRUK (grant #2020.109). Other relevant funding awarded to authors to conduct research for iPOP include: M.G. received funding from THL, Finnish Institute for Health and Welfare to support data collection. K.D. received funding from EDCTP RIA2019 and HDRUK (grant #2020.106) to support data collection. R.B. received funding from Alzheimer’s Disease Data Initiative and ICODA for the development of federated analysis. A.D.M. received funding from HDR UK who receives its funding from the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust; and Administrative Data Research UK, which is funded by the Economic and Social Research Council (grant ES/S007393/1). N.A. received funding from the National Institutes of Health (R35GM138353). O.S received funding from NordForsk (grant #105545). The remaining authors declare no competing interests. Funding Information: Funding and in-kind support: This work was supported by the International COVID-19 Data Alliance (ICODA), an initiative funded by the Bill and Melinda Gates Foundation and Minderoo as part of the COVID-19 Therapeutics Accelerator and convened by Health Data Research (HDR) UK, in addition to support from the HDR UK BREATHE Hub. Several ICODA partners contributed to the study, including: Cytel (statistical support), the Odd Group (data visualization) and Aridhia Informatics (development of federated analysis using a standardized protocol ([Common API] https://github.com/federated-data-sharing/ ) to be used in future work). Additional contributors: We acknowledge the important contributions from the following individuals: A. C. Hennemann and D. Suguitani (patient partners from Prematuridade: Brazilian Parents of Preemies’ Association, Porto Alegre, Brazil); N. Postlethwaite (implementation of processes supporting the trustworthy collection, governance and analysis of data from ICODA, HDR UK, London, UK); A. S. Babatunde (led data acquisition from University of Uyo Teaching Hospital, Uyo, Nigeria); N. Silva (data quality, revision and visualization assessment from Methods, Analytics and Technology for Health (M.A.T.H) Consortium, Belo Horizonte, Brazil); J. Söderling (data management from the Karolinska Institutet, Stockholm, Sweden). We also acknowledge the following individuals who assisted with data collection efforts: R. Goemaes (Study Centre for Perinatal Epidemiology (SPE), Brussels, Belgium); C. Leroy (Le Centre d'Épidémiologie Périnatale (CEpiP), Brussels, Belgium); J. Gamba and K. Ronald (St. Francis Nsambya Hospital, Kampala, Uganda); M. Heidarzadeh (Tabriz Medical University, Tabriz, Iran); M. J. Ojeda (Pontificia Universidad Católica de Chile, Santiago, Chile); S. Nangia (Lady Hardinge Medical College, New Delhi, India); C. Nelson, S. Metcalfe and W. Luo (Maternal Infant Health Section of the Public Health Agency of Canada, Ottawa, Canada); K. Sitcov (Foundation for Health Care Quality, Seattle, United States); A. Valek (Semmelweis University, Budapest, Hungary); M. R. Yanlin Liu (Mater Data and Analytics, Brisbane, Australia). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Funding Information: Funding and in-kind support: This work was supported by the International COVID-19 Data Alliance (ICODA), an initiative funded by the Bill and Melinda Gates Foundation and Minderoo as part of the COVID-19 Therapeutics Accelerator and convened by Health Data Research (HDR) UK, in addition to support from the HDR UK BREATHE Hub. Several ICODA partners contributed to the study, including: Cytel (statistical support), the Odd Group (data visualization) and Aridhia Informatics (development of federated analysis using a standardized protocol ([Common API] https://github.com/federated-data-sharing/) to be used in future work). Additional contributors: We acknowledge the important contributions from the following individuals: A. C. Hennemann and D. Suguitani (patient partners from Prematuridade: Brazilian Parents of Preemies’ Association, Porto Alegre, Brazil); N. Postlethwaite (implementation of processes supporting the trustworthy collection, governance and analysis of data from ICODA, HDR UK, London, UK); A. S. Babatunde (led data acquisition from University of Uyo Teaching Hospital, Uyo, Nigeria); N. Silva (data quality, revision and visualization assessment from Methods, Analytics and Technology for Health (M.A.T.H) Consortium, Belo Horizonte, Brazil); J. Söderling (data management from the Karolinska Institutet, Stockholm, Sweden). We also acknowledge the following individuals who assisted with data collection efforts: R. Goemaes (Study Centre for Perinatal Epidemiology (SPE), Brussels, Belgium); C. Leroy (Le Centre d'Épidémiologie Périnatale (CEpiP), Brussels, Belgium); J. Gamba and K. Ronald (St. Francis Nsambya Hospital, Kampala, Uganda); M. Heidarzadeh (Tabriz Medical University, Tabriz, Iran); M. J. Ojeda (Pontificia Universidad Católica de Chile, Santiago, Chile); S. Nangia (Lady Hardinge Medical College, New Delhi, India); C. Nelson, S. Metcalfe and W. Luo (Maternal Infant Health Section of the Public Health Agency of Canada, Ottawa, Canada); K. Sitcov (Foundation for Health Care Quality, Seattle, United States); A. Valek (Semmelweis University, Budapest, Hungary); M. R. Yanlin Liu (Mater Data and Analytics, Brisbane, Australia). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Publisher Copyright: © 2023, The Author(s).Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from −90% to +30%, were reported in many countries following early COVID-19 pandemic response measures (‘lockdowns’). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95–0.98, P value <0.0001), second (0.96, 0.92–0.99, 0.03) and third (0.97, 0.94–1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96–1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88–1.14, 0.98), third (0.99, 0.88–1.12, 0.89) and fourth (1.01, 0.87–1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02–1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03–1.15, 0.002), third (1.10, 1.03–1.17, 0.003) and fourth (1.12, 1.05–1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways.Peer reviewe

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Mortality Causes in Children 1-59 Months in Iran

    No full text
    Background: Mortality rate indicator for children under 5 years old is one of the important indicators in countries' development. Identifying the most common causes of mortality is one of the most important attempts to reduce mortality in children less than 5 years. The purpose of this study was to identify distribution of the mortality causes in Iranian children less than 5 years.Methods: This cross-sectional study has been carried out based on the results of data from the Child Mortality Surveillance System since 2007 to 2008. To determine the causes of death questionnaires have been designed which include personal data of the deceased child, medical history, and information on procedures at the time of hospitalization or death.Results: Of 5926 deaths on children under 5 years which the questionnaires were filled out, 63.2% were postneonatal deaths (1-11 month). Totally 60% of mortalities occurred in the rural areas and 52% of them had been among boys. The most common causes of mortality were the congenital and chromosomal abnormalities with 23.4%. The most incidences among diseases were respiratory system diseases.Conclusions: Carrying out more epidemiologic studies, providing health programs to control and prevent diseases with high incidences and delivering more specialized health facilities and services could be the proper strategies to reduce under 5 mortality rates in Iran

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries

    No full text
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways
    corecore