21 research outputs found

    Biogeography-Based Optimization for Weight Optimization in Elman Neural Network Compared with Meta-Heuristics Methods

    Get PDF
    In this paper, we present a learning algorithm for the Elman Recurrent Neural Network (ERNN) based on Biogeography-Based Optimization (BBO). The proposed algorithm computes the weights, initials inputs of the context units and self-feedback coefficient of the Elman network. The method applied for four benchmark problems: Mackey Glass and Lorentz equations, which produce chaotic time series, and to real life classification; iris and Breast Cancer datasets. Numerical experimental results show improvement of the performance of the proposed algorithm in terms of accuracy and MSE eror over many heuristic algorithms

    Encoding Motion Cues for Pedestrian Path Prediction in Dense Crowd Scenarios

    Get PDF
    Pedestrian path prediction is an emerging topic in the crowd visual analysis domain, notwithstanding its practical importance in many respects. To date, the few contributions in the literature proposed quite straightforward approaches, and only a few of them have taken into account the interaction between pedestrians as a paramount cue in forecasting their potential walking preferences in a given scene. Moreover, the typical trend was to evaluate the proposed algorithms on sparse scenarios. To cope with more realistic cases, in this paper, we present an efficient approach for pedestrian path prediction in densely crowded scenes. The proposed approach initiates by extracting motion features related to the target pedestrian and his/her neighbors. Second, in order to further increase the representativeness of the extracted motion cues, an autoencoder feature learning model is considered, whose outcome finally feeds a Gaussian process regression prediction model to infer the potential future trajectories of the target pedestrians given their walking records in the scene. Experimental results demonstrate that our framework scores plausible results and outperforms traditional methods in the literature

    Hierarchical multi-dimensional differential evolution for the design of beta basis function neural network

    No full text
    This paper proposes a hierarchical multi-dimensional differential evolution (HMDDE) algorithm, which is an automatic computational frame work for the optimization of beta basis function neural network (BBFNN) wherein the neural network architecture, weights connection, learning algorithm and its parameters are adapted according to the problem. In the HMDDE-designed neural network, the number of individuals of the population multi-dimensions is the number of beta neural networks. The population of HMDDE forms multiple beta networks with different structures at the higher level and each individual of the previous population is optimized at a lower hierarchical level to improve the performance of each individual. For the beta neural network consisting of m neurons, n individuals (different lengths) are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length is to optimize the free parameters of the beta neural network. To evaluate the comparative performance, we used benchmark problems drawn from identification system and time series prediction area. Empirical results illustrate that the HMDDE produces a better generalization performance.Web of Science9714013

    Survey of Countering DoS/DDoS Attacks on SIP Based VoIP Networks

    No full text
    Voice over IP (VoIP) services hold promise because of their offered features and low cost. Most VoIP networks depend on the Session Initiation Protocol (SIP) to handle signaling functions. The SIP is a text-based protocol that is vulnerable to many attacks. Denial of Service (DoS) and distributed denial of service (DDoS) attacks are the most harmful types of attacks, because they drain VoIP resources and render SIP service unavailable to legitimate users. In this paper, we present recently introduced approaches to detect DoS and DDoS attacks, and classify them based on various factors. We then analyze these approaches according to various characteristics; furthermore, we investigate the main strengths and weaknesses of these approaches. Finally, we provide some remarks for enhancing the surveyed approaches and highlight directions for future research to build effective detection solutions

    Evolving flexible beta basis function neural tree using extended genetic programming & Hybrid Artificial Bee Colony

    No full text
    tIn this paper, a new hybrid learning algorithm is introduced to evolve the flexible beta basis functionneural tree (FBBFNT). The structure is developed using the Extended Genetic Programming (EGP) and theBeta parameters and connected weights are optimized by the Hybrid Artificial Bee Colony algorithm. Thishybridization is essentially based on replacing the random Artificial Bee Colony (ABC) position with theguided Opposite-based Particle Swarm Optimization (OPSO) position. Such modification can minimizethe delay which might be lead by the random position, in reaching the global solution. The performanceof the proposed model is evaluated for benchmark problems drawn from time series prediction area andis compared with those of related methods.Web of Science4766865

    A new hybrid routing protocol for wireless sensor networks

    No full text
    International audienc

    Countering DDoS Attacks in SIP Based VoIP Networks Using Recurrent Neural Networks

    No full text
    Many companies have transformed their telephone systems into Voice over IP (VoIP) systems. Although implementation is simple, VoIP is vulnerable to different types of attacks. The Session Initiation Protocol (SIP) is a widely used protocol for handling VoIP signaling functions. SIP is unprotected against attacks because it is a text-based protocol and lacks defense against the growing security threats. The Distributed Denial of Service (DDoS) attack is a harmful attack, because it drains resources, and prevents legitimate users from using the available services. In this paper, we formulate detection of DDoS attacks as a classification problem and propose an approach using token embedding to enhance extracted features from SIP messages. We discuss a deep learning model based on Recurrent Neural Networks (RNNs) developed to detect DDoS attacks with low and high-rate intensity. For validation, a balanced real traffic dataset was built containing three attack scenarios with different attack durations and intensities. Experiments show that the system has a high detection accuracy and low detection time. The detection accuracy was higher for low-rate attacks than that of traditional machine learning
    corecore