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ABSTRACT Pedestrian path prediction is an emerging topic in the crowd visual analysis domain, notwith-
standing its practical importance in many respects. To date, the few contributions in the literature proposed
quite straightforward approaches, and only a few of them have taken into account the interaction between
pedestrians as a paramount cue in forecasting their potential walking preferences in a given scene. Moreover,
the typical trend was to evaluate the proposed algorithms on sparse scenarios. To cope with more realistic
cases, in this paper, we present an efficient approach for pedestrian path prediction in densely crowded
scenes. The proposed approach initiates by extracting motion features related to the target pedestrian and
his/her neighbors. Second, in order to further increase the representativeness of the extracted motion cues, an
autoencoder feature learningmodel is considered, whose outcomefinally feeds aGaussian process regression
prediction model to infer the potential future trajectories of the target pedestrians given their walking records
in the scene. Experimental results demonstrate that our framework scores plausible results and outperforms
traditional methods in the literature.

INDEX TERMS Crowd analysis, walking path prediction, motion modeling, computer vision.

I. INTRODUCTION
The mounting availability as well as the affordability of pow-
erful processing facilities has benefited the computer vision
field at large. This is manifested by the steady rise of potential
research applications that might eventually find way into real
scenarios. For instance, computer vision has recently shown
that, to some extent, understanding the behavioral patterns of
individuals is within reach. It can thus facilitate carrying out
a wide range of crowd-related tasks, some instances include:
Crowd management: Crowd modeling and analysis can

help comprehending, thus managing, public traffic and gath-
erings, as well as related events.
Urban planning: Understanding the undergoing interac-

tions in the crowd as well as the behaviors of individuals in
common places can assist in designing the structural layout
of public spaces in order to accommodate the different crowd
mobility flows.
Security and risk management: Monitoring public masses

for the aim of security and hazard prevention is one of the top

priorities with regards to today’s society. The automatization
of such process is therefore pivotal to aid ensuring secure
and smooth daily activities. Moreover, detecting abnormal-
ities may even help alarming yet preventing potential future
threats. In turn, time, cost and human labor can potentially be
saved.

In this regard, the relevant literature accumulates a decent
amount of papers, addressing several issues related to crowd,
such as activity forecasting [1], activity recognition [2],
anomaly detection [3], crowd counting and profiling [4]–[7].

Another yet relatively recent crowd behaviour analysis task
is pedestrian path prediction, which stands for forecasting the
potential future walking route of an individual (or a group of
people) provided their prior walking history. With respect to
the other crowd analysis and modeling tasks, pedestrian path
prediction has been devoted a remarkably scarce attention.

The task of foreseeing the potential walking route of an
individual in crowded scenes can be a laborious attempt,
given that numerous factors are liable to be treated jointly.
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For instance, it has a strong tie with the structural layout of
the scene in consideration. In other words, spacious sites can
accommodate large masses with high physical freedom of
movement, whereas confined spaces can enclose much less
people with a limited mobility [8], [9].

Another worth noting fact regards the behavioral
tendencies of the person of interest. For instance, impaired
people constrained on wheelchairs usually tend to pursue
less-crowded paths that can conveniently accommodate them
as well as people in their vicinity, besides the way in which
they interact globally (i.e., scene dynamics). However, apart
from unusual situations, it is socially evident that people nor-
mally assumes commonsense social etiquettes (e.g., a typical
manner to follow a route that is obstructed by a conversational
group of people is, to avoid inconveniences, to detour it rather
than crossing it). Such universally recognized behavioral
codes suggest that crowd modeling via computer vision is
not out of reach.

To date, only several contributions have been reported in
the literature regarding pedestrian path prediction. The work
proposed in [1], for instance, combines the semantics of the
scene in order to derive a trajectory and destination forecast-
ing model based on Markov Decision Processes. However,
their approach was evaluated on sparse and slightly crowded
scenes, which leaves open the question regarding its perfor-
mance in dense public scenarios. Inspired by the success of
mid-level elements [10], Walker et al. [11] suggest a non-
parametric approach for visual prediction. The underlying
insight is to represent a scene by means of a bunch of mid-
level visual elements extracted via a sliding window, and then
model the interaction between moving elements (agents) in
the scene through a reward function that assigns high values
to those agents having the capacity to mobilize in the scene.
The main advantage of this method is the unsupervised fash-
ion. However, the definition of agents in this work seems to
be subjective given that in heavily crowded scenes, normally
large-scale occlusions take place. In [12], a Bayesian cascade
model that couples topic mixture model and Gaussian mix-
tures, fed with an ensemble of words encoding KLT tracklets
over a grid of a given scene, is proposed. This is the first
attempt that considers the co-occurrence and interaction of
objects in the path forecasting context. However, given that
the trajectories produced by tracklets are discontinuous, it is
hard to assign the predicted outcomes to individuals, which
is the main aim of human path prediction. Motivated by the
success of Long-Short Term Memory (LSTM) networks in
predicting long sequences, particularly in speech and hand-
writing [13], [14], Alahi et al. tailored them to the path predic-
tion issue [15]. The underlying idea is to assign LSTMmodels
to sequences (representing individuals) of the scene at hand,
and then top them with a pooling layer to ensure the mod-
eling of the interaction between spatially close sequences.
Receiver trajectory prediction in American football games
was the subject of study in [16], where a reward function
takes jointly static features (relevant to prior knowledge about
the game) and dynamic features (short-term prediction of

the opposite team players). However, the proposed method
remains dependent on offline knowledge about the game.
Another LSTM-driven method was proposed in [17], but it
was applied on tracklets rather than agents.

In this context, we note that the works mentioned above
are jointly characterized by three aspects, namely (i) some of
them depend on the scene structural and/or semantic layouts,
(ii) only a few attempts consider agent interaction as a key-
factor in determining the future walking routes of a given
pedestrian, and (iii) even the latter works seem to evaluate
their models on datasets characterized by little to moderate
pedestrian density, which raises the concern regarding their
effectiveness in densely crowded scenes.

To address that, we propose in this work a path forecast-
ing approach, whose main novelty stems from the fact that
it takes into account the local agents (pedestrians) in the
neighborhood of the target pedestrian in dense scenarios,
and demonstrate that an agent-inclusive approach (i.e., the
neighbor pedestrians are included in the process) is ought to
yield better results than a target-centric approach. To model
the interaction between the target pedestrian and its neigh-
bors, we resort to simple but informative features which are
further reinforced by a feature learning stage. To strongly
consider the interactions of the target with its neighbors, an
Auto Encoder (AE) model is applied, which proved to score
plausible improvements over the former selected features.
Ultimately, such learned features are fed into a prediction
model based on Gaussian Mixture Model (GPR) [23]–[25] in
order to predict the future walking coordinates of the target
agent. We show that our approach can outperform, by far,
traditional prediction models in dense scenarios.

The remaining part of the paper is organized as follows.
Section 2 elaborates the proposed approach as well as the
conceptual backgrounds. Section 3 reports the experimental
results and discussions, and Section 4 concludes the paper.

II. THE PROPOSED FRAMEWORK
A. GENERAL PIPELINE
In path prediction, the goal is to discern the potential future
walking coordinates across a given scene of an individual by
making use of their prior motion records. Precisely, provided
the walking history of a pedestrian from time t0 to time
instant th, the aim is to infer the spatial walking coordinates
from time th+1 to tend . To this end, a typical way to approach
this task is to build a model based on the known walking
history, and exploit it to produce the future locations of the
target pedestrian.

In public places, especially in crowded scenarios, it is valid
that people normally follow certain commonsense rules to
interact with each other. For instance, etiquettes imply that
pedestrians typically tend to detour conversational groups
and other walking pedestrians that lie in their way in order
to accommodate each other, avoid collisions and inconve-
niences. Such social observations suggest that modeling the
walking routes of pedestrians is within reach if the motion
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FIGURE 1. Architecture of the proposed path forecasting framework.

patterns characterizing the interaction between pedestrians in
the scene are well-capitalized on. In this respect, the essence
of our approach is inspired by the earlier fact. Precisely, our
framework proceeds by deducing motion features related to
(i) the target pedestrian, as well as (ii) his/her nearby pedestri-
ans within a local spatial spot. In order to further improve the
representativeness of the extracted motion features, a feature
learning block based on AE is appended. Finally, the learned
features are fed into learned GPRmodels to predict the future
spatial locations of the target pedestrian. A depiction of our
approach is provided in Fig. 1. In the next subsections, details
outlining the three building blocks of the framework are
conducted.

B. MOTION FEATURES
Let pi, i = 1, . . . ,N be the target pedestrian, and
F = t0, . . . , th be the uniformly samples time points (i.e.,
frame indexes) representing the walking records of pi, we
recall that the aim is to make use of the information stored in
F to infer the future walking trajectory within the time span
th+1 to tend . Thus, in order to learn the prediction models, two
information are required, namely (i) features representing the
motion patterns of the target pi with respect to its neighbors,
that are deduced from the walking history within F , along
with (ii) training labels, which represent the spatial coordi-
nates of pi within F .
In order to enable the earlier process, the data comprised in

F is fragmented into overlapping segments (e.g., a one frame
overlap) of k frames each, where the k spatial locations are
utilized for feature extraction and subsequently fed into the
GPR as input, and their succeeding coordinates at time k + 1
as output (label) for training to the GPR model. For example,
if k equals to five, then the first five spatial points are utilized
for motion feature extraction (GPR input) and the sixth point
is employed as a label (GPR output), then the same applies
for the next overlapping points.

In order to characterize the motion patterns of a target
pedestrian pi, i = 1, . . . ,N as well as those moving in their
vicinity, we adopt jointly two distinct but complementary fea-
ture modalities. The first one consists in extracting features
relative to the pedestrian of interest, where displacement and
features are extracted. The displacement features correspond

FIGURE 2. Display of the motion feature extraction process. (a) Spatial
distances to neighbor pedestrians, black dots refer to the special
locations of the target pedestrian and green ones to those of the
neighbors. (b) Feature extraction from the walking history of the target
pedestrian, blue arrows pertain to spatial displacements, and red ones
represent the target’s orientation angles. (c) Tolerance gap with respect to
nearby pedestrians, it can be noted that the first neighbor is more likely
to collide with the target than the second one as its tolerance gap is
narrower.

to the Euclidean distances between each two subsequent
spatial points of the k frames. Thus, a (k − 1)-dimensional
displacement vector vd is envisioned, as illustrated in Fig. 2.

The second modality relates to three features correspond-
ing to the interaction between pi and its nearby pedestrians
that appear within a local sport (e.g., a circle of a one frame
radius) at the current time instant.

Therefore, the first one considers Euclidean distance
between each of the k spatial points of the target pedes-
trian and their counterparts (only the ones that occur within
the local circle are considered) corresponding to the nearby
pedestrians are aggregated in a vector vN . Thus, the length
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of vN depends on how many spatial points of nearby pedes-
trians coincide with those of the target. For instance, if only
two pedestrians appear inside the local area where the first
neighbor co-occurs with the target at three time instants, and
the second neighbor coincides with the target at two instants,
then five Euclidean distance values are gathered in vN . Fig. 2
illustrates the concept.

While the earlier feature relates to the spatial distances
between the target and its neighbors, the second one considers
the angular distances between them. Thus, for the target
pedestrian and within the k frames, the orientation angles
can be extracted from the lines joining each two consecutive
points, k − 1 angular values are thus obtained. Hence, after
calculating the individual angular deviations of the target as
well as the co-occurring pedestrians inside the local circle,
the angular distances can be easily inferred and stored in vθ .

The third feature expresses the likelihood for the target
pedestrian to collide with a nearby pedestrian. For given
neighbor pedestrian, that is achievable by virtually extending
(linearly) the line joining the last two coordinates of this latter
as well as those of the target pedestrian, which eventually
leads to a meeting knot along the virtual line of the target
(See Fig. 2). Thus, the longer the distance (termed tolerance
gap) between the last coordinate of the target and the meeting
knot the less likely the collision between the two persons
is to take place, and vice versa otherwise. Fig. 2 further
demonstrates the concept. Thereupon, the tolerance gap val-
ues corresponding to all nearby pedestrians are collected
into a vector vg. Note that this feature is motivated by the
assumption that persons tend to pursue a linear line in the
short term.

So far vd , vN , vθ and vg, pertaining to target displacement,
spatial neighbor distances, angular neighbor distances, and
collision tolerance gaps, are obtained. However, at each time
instant, different number of pedestrians are observed, which
entails inconsistent feature vector lengths. In order to render
all the vectors to a constant dimension, we calculate the first
five statistical moments for each of the four vectors, which
totals a 20-dim feature vector x ∈ Rn to be fed into the AE.

C. UNSUPERVISED FEATURE LEARNING
Unsupervised feature learning is one of the paradigms that
has been shown to better the underlying structure of features
in the recent literature [18]–[21]. One of the successful mod-
els in this regard is the Autoencoder, which is characterized
by a simple symmetric architecture, a simple learning process
performed in an unsupervised fashion, and a good generaliza-
tion capability.

In its basic form, an AE is composed of three layers, an
input layer acquiring the input features of size n, a hidden
layer of d nodes, and a reconstruction layer with n nodes
(same as the input layer).

Suppose x ∈ Rn be the input vector, h ∈ Rd the output
of the hidden layer, the underlying principle of AE is the
reproduction, with a certain error, of its input x into an output
vector x̂ ∈ Rn through h. Thus, a feature reduction is fulfilled

if d < n, whilst a (sparse) over-complete representation is
envisioned in a high dimensional manifold if d > n [24].
The reproduction of x at he output undergoes two phases,

namely an encoding part that maps x into h, and a decoding
stage that maps this latter into x̂, through a nonlinear mapping
function f as expressed by Eq (1) and Eq (2), respectively:

h = f (Wx+ b) (1)

x̂ = f
(
W′h+ b′

)
(2)

where W ∈ Rd×n and b ∈ Rd represent the weight and
the bias of the encoding part, and W′ ∈ Rn×d and b′ ∈ Rn

stand for the same of the decoding part. Typically, a sigmoid
activation function is employed.

The parameters (W,W′, b and b′) can be estimated by min-
imizing a cost function L(x, x̂) expressing the error between
the input and its reconstruction. Since the input features are
real-valued, a squared error function is adopted:

L
(
x, x̂

)
=
∥∥x− x̂

∥∥2 (3)

Initially, the weights and the biases are set randomly, and
then updated iteratively until a predefined convergence crite-
rion (i.e., maximum number of iterations) is met. The update
is achieved through the following equations:

W = W− η
δL(x, x̂)
δW

(4)

W′ = W′ − η
δL(x, x̂)
δW′

(5)

b = b− η
δL(x, x̂)
δb

(6)

b′ = b′ − η
δL(x, x̂)
δb′

(7)

where η is the learning rate. Finally, the encoded (learned)
features, denoted l ∈ Rd are comprised in the hidden layer h,
which are then fed into the GPRmodel briefly outlined below.

D. GAUSSIAN PROCESS PATH FORECASTING
In GP formulation [25]–[27], learning a machine follows a
Bayesian estimation problem, where the parameters of the
machine are assumed as random variables to be inferred
from a Gaussian distribution. Let us consider L = {li}Mi=1 a
matrix accommodating the AE-learned feature vectors, and
li ∈ RNc represents a feature vector of extracted from the
K-long frames. Let also y = {yi}Mi=1 be the corresponding
output target vector, which comprises the spatial coordinate
at time K + 1 corresponding to their respective vectors in L.
The aim of GP regression is to infer from of training set
{L, y} a function ψ(·) so that y = ψ (x). This can be done by
formulating the Bayesian estimation problem directly in the
function space view. The observed values y of the function to
model are considered as the sum of a latent function following
a joint Gaussian distribution and a noise component ε with
zero mean and variance σ 2

n :

y ∼ GP
(
0,K (L,L)+ σ 2

n I
)

(8)
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FIGURE 3. Examples of path prediction from three different time slots. First row displays the results of our approach, red dots refer to the training
segment, green to actual test segment and yellow to the estimated prediction. Second row represents the results of SF, where circled zones highlight
the prediction failures regarding the SF [22], while their counterpart predictions of our approach are properly inferred.

where K(X,X) is the covariance matrix, which is built by
means of a covariance (kernel) function computed on all the
training sample pairs, and I represents the identity matrix.

A central role in the GP regression model is played by
the covariance function k(xi, xj) as it embeds the geometrical
structure of the training samples. In this paper, we consider
the following Matérn covariance function [27]:

k
(
li, lj

)
=θ0

(
1+

√
3
∣∣li − lj∣∣
s

)
exp

(
−

√
3
∣∣li − lj∣∣
s

)
(9)

For this covariance function, the hyperparameter vector
given by � = [s, θ0] can be determined empirically by
cross-validation. However, the intrinsic nature of GPs allows
a Bayesian treatment for the estimation of �.

These were the fundamental insights outlining GPR. For
an in-depth comprehension, the reader is directed to consult
[23]–[25].

III. RESULTS AND DISCUSSION
A. DATASET
As highlighted earlier, our approach is meant essentially for
densely crowded scenes. In this regard, to the best of our
knowledge, the only available dataset that meets our endeavor
is the one recently presented in [6], which totals 12684 pedes-
trians from a one-hour video. The complete trajectory from
the time each pedestrian enters the scene up to the exit time
is labeled, setting thereby the largest dataset of this kind to
date, which we deem as a valuable advantage to realistically
assess our approach. For each trajectory, a portion of the
available data is employed for training and the remaining part
is retained for test. In order to quantify the performance, we
utilize the NormalizedMean Squared Error (NMSE) between

the predicted trajectory and the actual one, thus the smaller
the NMSE the more accurate the prediction, as in [26].

TABLE 1. Influence of the training size.

B. EXPERIMENTS
We initiate the experiments by assessing the influence of the
training size, where the respective results are summarized in
Table 1. Thus, it can be seen that the accuracy increases with
the training size, where the best score of 3.06% was obtained
for 80% and 90% equally, which is due to the fact that the
AE inherently requires a large amount of training data in
order to converge faster. Consequently, the former option i.e.,
80% for training and 20% for test) is therefore adopted in the
remaining experiments.

Second, we study the impact of the local neighbors on the
results, as well as the feature learning and path prediction
processes (i.e., assigning one GPR/AE model per pedestrian
or a global model for all), the results are reported in Table 2.
The best result of 3.1% is observed when assigning a single
AE and a single GPR model for each pedestrian, while a
3.4% is scored when a global AE is utilized, which is not
a big decline given that the AE serves as an unsupervised
encoding mechanism. By contrast, the GPR is employed as
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TABLE 2. Comparison scores.

a supervised prediction model, hence it cannot be learned
globally on a bunch of pedestrians while manifesting a good
generalization ability as pedestrians (i) neither exhibit the
same walking behaviors, (ii) nor share the same walking con-
text (i.e., they don’t necessarily walk across the same spatial
spot or encounter the same obstacles), which is confirmed by
the quantitative results i.e., a global GPR drops the accuracy
largely by almost 9%.

On the other hand, disregarding the neighbors’ information
incurs roughly a 1.5% drop, which confirms that the interac-
tions between the target and its neighbors plays a pivotal cue
in the whole process, which represents one of the strengths of
our approach.

TABLE 3. Effect of the size of previous coordinates.

We further study the impact of k (i.e., the number of
preceding frames to be considered) in Table 3. It is clear that
a small value (i.e., k = 1 or k = 3) is unreliable, while a high
value (i.e., k = 10) slides down the accuracy, leading us to
opt for k = 5 as an optimal heuristic. This suggests that a
short walking history is insufficient to characterize the future
undergoing motion patterns, whilst too much information is
not useful, as the future walking behavior of a given pedes-
trian seems to depend on the near past history.

As for comparison, we implemented three well-known
reference methods for crowd analysis, namely Social Force
Dynamic (SF) [22], Constant Velocity (CV) [26], and Con-
stant Acceleration (CA) [26]. The results are reported in
Table 1, and Table 2. Our method outperforms all three
schemes by 2.7%, 2.7%, and 6.2%, respectively. For instance,
after our method, the SF yielded 5.7%, ranking second given
that it also considers the interaction between the pedestrians
into the prediction process, whilst the remaining algorithms
do not. Visual examples of path prediction by our method
and SF, for different time intervals, are displayed in Fig. 3.
It can be seen that, by contrast to our method, the SF can
successfully predict trajectories with linear-like nature but
fails otherwise (e.g., second row of Fig. 3).

Although our framework is aimed at addressing crowded
public settings, we also assess it in a sparse scenario. The
ETH HOTEL dataset [8], which contains over 300 different

FIGURE 4. Examples of path prediction from the ETH dataset. (a) Our
approach (b) Social Force model [22]. It can be noticed that our
predictions are more consistent.

TABLE 4. Results on the ETH dataset.

pedestrians is employed. The size of the training and test
splits is the same as the PWPD dataset. As per evaluation
metric, we use the average MSE as in [1] and [8]. The
results are summarized in Table 4. Although our method still
outperforms SF [8], CV [21] and CA [21], the gain is not as
high as that on the PWPDdataset. For instance, second to ours
comes the SF [8] method with a 0.03 decline. This is traced
to the fact that our method, although can still outperform in a
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sparse setting, is meant primarily to model the interaction of
individuals in a crowded scene. Therefore, sparse scenarios,
such as the ETH HOTEL dataset, do not enable to adequately
capture the contextual motion features w.r.t a given target
pedestrian. Visual examples are illustrated in Fig. 4). It is
to observe that our method is better especially in non-linear
cases.

For reproduction purposes, it is to note that the above
experiments were conducted based on 100 hidden nodes
for both AE and GPR models. Although other architectural
alternatives (e.g., increasing the number of hidden nodes for
instance) might lead to better results, this is out of the scope
of the paper.

IV. CONCLUSIONS
This paper proposed a pedestrian walking path prediction
approach in crowded scenes. The underlying idea is to char-
acterize the motion patterns of a given target pedestrian as
they move in the scene, with respect to their neighbors, and
reinforce the inferred features via unsupervised feature learn-
ing. Experimental results show that promising scores can be
attained versus well-established traditional methods. Never-
theless, potential ameliorations are prone to be achieved by
relying for instance on a deeper feature learning architecture,
which might introduce notable gains but potentially compro-
mises the processing overheads. Another line of improvement
is to assign either AE or GPR models to local regions within
the scene, where regions that display similar motion attributes
(e.g., pedestrian frequency) are assigned to a single AE/GPR,
which we expectedly believe is subject to raise the predic-
tion precision if the region segmentation step is adequately
addressed.

REFERENCES
[1] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, ‘‘Activity

forecasting,’’ in Proc. ECCV, 2012, pp. 201–214.
[2] M. Ziaeefard and R. Bergevin, ‘‘Semantic human activity recognition:

A literature review,’’ Pattern Recognit., vol. 48, no. 8, pp. 2329–2345,
2015.

[3] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, ‘‘Anomaly detec-
tion in crowded scenes,’’ in Proc. CVPR, Jun. 2010, pp. 1975–1981.

[4] C. Zhang, H. Li, X. Wang, and X. Yang, ‘‘Cross-scene crowd counting
via deep convolutional neural networks,’’ in Proc. CVPR, Jun. 2015,
pp. 833–841.

[5] J. Shao, C. C. Loy, and X. Wang, ‘‘Scene-independent group profiling in
crowd,’’ in Proc. CVPR, Jun. 2014, pp. 2219–2226.

[6] B. Zhou, X. Tang, and X. Wang, ‘‘Learning collective crowd behaviors
with dynamic pedestrian-agents,’’ Int. J. Comput. Vis., vol. 111, no. 1,
pp. 50–68, 2015.

[7] B. Zhou, X. Tang, H. Zhang, and X. Wang, ‘‘Measuring crowd col-
lectiveness,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 8,
pp. 1586–1599, Aug. 2014.

[8] S. Yi, H. Li, and X. Wang, ‘‘Understanding pedestrian behaviors from
stationary crowd groups,’’ in Proc. CVPR, Jun. 2015, pp. 3488–3496.

[9] S. Yi, H. Li, and X. Wang, ‘‘Pedestrian travel time estimation in crowded
scenes,’’ in Proc. ICCV, 2015, pp. 3137–3145.

[10] S. Singh, A. Gupta, and A. A. Efros, ‘‘Unsupervised discovery of mid-level
discriminative patches,’’ in Proc. ECCV, 2012, pp. 73–86.

[11] J. Walker, A. Gupta, and M. Hebert, ‘‘Patch to the future: Unsupervised
visual prediction,’’ in Proc. CVPR, 2014, pp. 3302–3309.

[12] Y. Yoo, K. Yun, S. Yun, J. Hong, H. Jeong, and J. Y. Choi, ‘‘Visual path
prediction in complex scenes with crowded moving objects,’’ in Proc.
CVPR, 2016, pp. 3488–3496.

[13] A. Graves and N. Jaitly, ‘‘Towards end-to-end speech recognition with
recurrent neural networks,’’ in Proc. ICML, vol. 14. 2014, pp. 1764–1772.

[14] A. Graves. (2013). ‘‘Generating sequences with recurrent neural net-
works.’’ [Online]. Available: https://arxiv.org/abs/1308.0850

[15] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, ‘‘Social LSTM: Human trajectory prediction in crowded
spaces,’’ in Proc. CVPR, Jun. 2016, pp. 961–971.

[16] N. Lee and K. M. Kitani, ‘‘Predicting wide receiver trajectories in
American football,’’ in Proc. WACV, Mar. 2016, pp. 1–9.

[17] H. Su et al., ‘‘Crowd scene understanding with coherent recurrent neural
networks,’’ in Proc. IJCAI, 2016, pp. 3469–3476.

[18] A. Coates, H. Lee, and A.Y. Ng, ‘‘An analysis of singlelayer networks
in unsupervised feature learning,’’ in Proc. 14th Int. Conf. Artif. Intell.
Statist. (AISTATS), Ann Arbor, MI, USA, 2011, pp. 1–9.

[19] Y.Wang, Z. Xie, K. Xu, Y. Dou, and Y. Lei, ‘‘An efficient and effective con-
volutional auto-encoder extreme learning machine network for 3d feature
learning,’’ Neurocomputing, vol. 174, pp. 988–998, Jan. 2016.

[20] S. Rifai, P. Vincent, X. Müller, X. Glorot, and Y. Bengio, ‘‘Contractive
auto-encoders: Explicit invariance during feature extraction,’’ in Proc.
ICML, 2011, pp. 833–840.

[21] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[22] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, ‘‘You’ll never walk
alone: Modeling social behavior for multi-target tracking,’’ in Proc. ICCV,
Sep./Oct. 2009, pp. 261–268.

[23] C. K. I. Williams and D. Barber, ‘‘Bayesian classification with Gaussian
processes,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12,
pp. 1342–1351, Dec. 1998.

[24] C. Rasmussen and C. K. I. Williams, Gaussian Process for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[25] J. Quiñonero-Candela and C. E. Rasmussen, ‘‘A unifying view of sparse
approximate Gaussian process regression,’’ J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[26] S. Yi, H. Li, and X. Wang, ‘‘Pedestrian behavior understanding and pre-
diction with deep neural networks,’’ in Proc. ECCV, 2016, pp. 263–279.

YUKE LI received the M.Sc. degree in microwave
engineering and the Ph.D. degree in computer sci-
ence from the State Key Laboratory of Information
Engineering in Surveying Mapping and Remote
Sensing, Wuhan University. He is currently pur-
suing the Ph.D. degree with the Department of
Pattern Analysis and Computer Vision, Istituto
Italiano di Tecnologia, under the supervision of
Prof. V. Murino. His main interests lie in computer
vision and deep learning.

MOHAMED LAMINE MEKHALFI (S’13–M’16)
received the State Engineer degree in electronics
(with specialization in telecommunications) from
the University of Mentouri, Constantine, Algeria,
in 2009, the M.Sc. degree in electronics (with spe-
cialization in signal processing) from the Univer-
sity of Batna, Algeria, in 2012, under the supervi-
sion of Prof. R. Benzid, and the Ph.D. degree in
information and communication technology (ICT)
from the University of Trento, as part of the ICT

International Doctoral School. From 2012 to 2016, he was engaged with the
Signal Processing and Recognition Laboratory headed by Prof. F. Melgani
with the Department of Information Engineering and Computer Science,
University of Trento. Since 2016, he has been a Post-Doctoral Researcher
with the Department of Pattern Analysis and Computer Vision, Istituto
Italiano di Tecnologia, under the supervision of Prof. V. Murino, where he
conducts research mainly in crowd behavior analysis/modeling and person
re-identification. His research interests mainly encompass computer vision,
pattern recognition, machine learning, and remote sensing.

24374 VOLUME 5, 2017



Y. Li et al.: Encoding Motion Cues for Pedestrian Path Prediction in Dense Crowd Scenarios

MOHAMAD MAHMOUD AL RAHHAL (S’14–
M’17) received the B.Sc. degree in computer engi-
neering from Aleppo University, Aleppo, Syria,
in 2002, the M.Sc. degree from Hamdard Uni-
versity, New Delhi, India, in 2005, and the Ph.D.
degree in computer engineering from King Saud
University, Riyadh, Saudi Arabia, in 2015.

From 2006 to 2012, he was a Lecturer with
Al Jouf University, Sakakah, Saudi Arabia. Since
2015, he has been an Assistant Professor in com-

puter science with King Saud University. His research interests include
signal/image medical analysis, remote sensing, and computer vision.

ESAM OTHMAN (S’14) received the B.Sc.
(Hons.) degree in computer engineering from
Umm Al-Qura University, Mecca, Saudi Arabia,
in 2007, and the M.Sc. degree in computer
engineering from King Saud University, Riyadh,
Saudi Arabia, in 2012, where he is currently pursu-
ing the Ph.D. degree with the Department of Com-
puter Engineering. His research interests include
machine learning, pattern recognition, and remote
sensing.

HABIB DHAHRI was born in Sidi Bouzid,
Tunisia, in 1975. He received the degree in com-
puter science in 2001, and the Ph.D. degree in com-
puter engineering from the National Engineering
School of Sfax in 2013. He is currently an Assis-
tant Professor in computer science with King Saud
University. His research interest includes com-
putational intelligence: neural network, swarm
intelligence, differential evolution, and genetic
algorithm.

VOLUME 5, 2017 24375


	INTRODUCTION
	THE PROPOSED FRAMEWORK
	GENERAL PIPELINE
	MOTION FEATURES
	UNSUPERVISED FEATURE LEARNING
	GAUSSIAN PROCESS PATH FORECASTING

	RESULTS AND DISCUSSION
	DATASET
	EXPERIMENTS

	CONCLUSIONS
	REFERENCES
	Biographies
	YUKE LI
	MOHAMED LAMINE MEKHALFI
	MOHAMAD MAHMOUD AL RAHHAL
	ESAM OTHMAN
	HABIB DHAHRI


