7,820 research outputs found

    Lyapunov Exponents without Rescaling and Reorthogonalization

    Full text link
    We present a new method for the computation of Lyapunov exponents utilizing representations of orthogonal matrices applied to decompositions of M or MM_trans where M is the tangent map. This method uses a minimal set of variables, does not require renormalization or reorthogonalization, can be used to efficiently compute partial Lyapunov spectra, and does not break down when the Lyapunov spectrum is degenerate.Comment: 4 pages, no figures, uses RevTeX plus macro (included). Phys. Rev. Lett. (in press

    Phase Space Transport in Noisy Hamiltonian Systems

    Get PDF
    This paper analyses the effect of low amplitude friction and noise in accelerating phase space transport in time-independent Hamiltonian systems that exhibit global stochasticity. Numerical experiments reveal that even very weak non-Hamiltonian perturbations can dramatically increase the rate at which an ensemble of orbits penetrates obstructions like cantori or Arnold webs, thus accelerating the approach towards an invariant measure, i.e., a near-microcanonical population of the accessible phase space region. An investigation of first passage times through cantori leads to three conclusions, namely: (i) that, at least for white noise, the detailed form of the perturbation is unimportant, (ii) that the presence or absence of friction is largely irrelevant, and (iii) that, overall, the amplitude of the response to weak noise scales logarithmically in the amplitude of the noise.Comment: 13 pages, 3 Postscript figures, latex, no macors. Annals of the New York Academy of Sciences, in pres

    Basin-level use and productivity of water: examples from South Asia

    Get PDF
    Water managementWater conservationRiver basinsWater useProductivityCase studiesIrrigated farmingIndicatorsWater scarcity

    Manual measurement of retinal bifurcation features

    Get PDF
    This paper introduces a new computerized tool for accurate manual measurement of features of retinal bifurcation geometry, designed for use in investigating correlations between measurement features and clinical conditions. The tool uses user-placed rectangles to measure the vessel width, and lines placed along vessel center lines to measure the angles. An analysis is presented of measurements taken from 435 bifurcations. These are compared with theoretical predictions based on optimality principles presented in the literature. The new tool shows better agreement with the theoretical predictions than a simpler manual method published in the literature, but there remains a significant discrepancy between current theory and measured geometry

    Auxiliary variational MCMC

    Get PDF
    We introduce Auxiliary Variational MCMC, a novel framework for learning MCMC kernels that combines recent advances in variational inference with insights drawn from traditional auxiliary variable MCMC methods such as Hamiltonian Monte Carlo. Our framework exploits low dimensional structure in the target distribution in order to learn a more efficient MCMC sampler. The resulting sampler is able to suppress random walk behaviour and mix between modes efficiently, without the need to compute gradients of the target distribution. We test our sampler on a number of challenging distributions, where the underlying structure is known, and on the task of posterior sampling in Bayesian logistic regression. Code to reproduce all experiments is available at https://github.com/AVMCMC

    Effect of debris size on the tribological performance of thermally sprayed coatings

    Get PDF
    This research aims to assess the effect of the debris particle size on the tribological performance and lubrication regime parameters of a Ni-based alloy coating. This is a key industrial problem, and its resolution can contribute to better machine endurance and proper maintenance. The debris particles are simulated by hard Al2O3 particles of size ranging from nanometers to 45 μm and dispersed in an oil lubricant. The coating studied is NiCrBSi deposited by flame spraying technique followed by the Surface Flame Melting (SFM) process. The counterpart disk sample was fabricated from quenched and tempered F-5220 steel (in line with A681(O1) ASTM). This pair was tested under linear sliding contact. Our results show that the addition of alumina particles contributes to a significant increase in wear, particularly for the largest particles (micrometric size). In the case of micrometric particles, it is possible to observe the formation of higher surface roughness, numerous microgrooves, and plastic flow of NiCrBSi coating perpendicular to the sliding direction, resulting in higher loss of volume. It was found that the actual surface roughness (obtained as a function of the debris particle size) allows better identification and prediction of the lubrication regime for wear processes instead of the traditional approach that uses the initial surface roughness as a parameter

    Resource targets for advanced underground coal extraction systems

    Get PDF
    Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance
    corecore