Particle Accelerators, 1996, Vol. 55, pp. [365-374] /119-128 © 1996 OPA (Overseas Publishers Association)
Reprints available directly from the publisher Amsterdam B.V. Published in The Netherlands under
Photocopying permitted by license only license by Gordon and Breach Science Publishers SA

Printed in Malaysia

BEAM DYNAMICS CALCULATIONS AND
PARTICLE TRACKING USING
MASSIVELY PARALLEL PROCESSORS

ROBERT D. RYNE! and SALMAN HABIB?

' Mail Stop H817, Accelerator Operations and Technology Division,
Los Alamos National Laboratory, Los Alamos NM 87545, USA

2Mail Stop B288, Theoretical Division, Los Alamos National Laboratory,
Los Alamos NM 87545, USA

(Received 31 December 1995; in final form 31 December 1995)

During the past decade massively parallel processors (MPPs) have slowly gained acceptance
within the scientific community. At present these machines typically contain a few hundred
to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The
potential performance of these machines is illustrated by the fact that a month long job on a
high end workstation might require only a few hours on an MPP. The acceptance of MPPs has
been slow for a variety of reasons. For example, some algorithms are not easily parallelizable.
Also, in the past these machines were difficult to program. But in recent years the development
of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs
much easier to use. In the following we will describe how MPPs can be used for beam dynamics
calculations and long term particle tracking.

Keywords: Beam dynamics; tracking; parallel computing.

1 INTRODUCTION

During the 1980s vector supercomputers established themselves as the
machines of choice for physicists performing the most numerically intensive
calculations; but by the end of the decade many were turning away from
the timeshared vector machines of centralized supercomputer centers and
obtaining their own dedicated high end workstations. Today such work-
stations offer users performance approaching a few hundred MFLOPS with
memories up to 1 GByte. Since high end workstations are becoming a
commodity item, one can rightly question the usefulness of centralized

[3651/119

[3661/120 R.D. RYNE and S. HABIB

supercomputer centers offering vector performance of at best 2 GFLOPS per
processor. In fact, many supercomputer centers have turned to massively par-
allel processors (MPPs) to provide their users with the highest performance
and largest memories available today. For example, since the next generation
of MPPs will have up to a few thousand processors like those found in high
end workstations, they have a potential performance of a few hundred to one
thousand GFLOPS. Also, with order of 100 MByte of RAM on each pro-
cessor, users will be able to run jobs requiring up to several hundred GBytes
of memory.

Though MPPs have potentially very high performance it is often not
easily achievable in practice. For example, some algorithms are not easily
parallelizable. In these cases significant effort might be required to implement
an algorithm on a parallel machine, or one might need to find a new way of
thinking about the problem that is amenable to parallel solution. Also, in the
past these machines were difficult to program and they required one to learn
a new programming language. However, in recent years the development of
parallel scientific software libraries and Fortran-like languages have made
MPPs much easier to use.

There are two main paradigms for programming MPPs. The most
flexible, and the most difficult from a programming standpoint, is the
Multiple Instruction Multiple Data (MIMD) paradigm. In this approach,
the programmer essentially tells every processor what to do, including
when to send data to other processors, when to wait for data from other
processors, efc. This is accomplished using message passing libraries such
as PVM (Parallel Virtual Machine) and MPI (Message Passing Interface).
This style of programming has been called the “assembly language of
MPPs.” The other main paradigm is the Single Instruction Multiple Data
(SIMD) approach, in which every processor executes the same instructions
but on different data. A similar paradigm is the Single Program Multiple
Data (SPMD) approach, where every processor executes the same program,
asynchronously, on different data. For those problems that are trivially
parallel the SIMD approach is sufficient. This includes the integration of
trajectories of particles in specified fields. For problems that are not easily
parallelizable MIMD programming provides the best means to achieve
good performance, though it could involve the effort of a small or large
research project. An example of this is the process of depositing charge on
a grid, which has received much attention in the plasma particle simulation
community.!»?

PARTICLE TRACKING USING PARALLEL PROCESSORS [3671/121

Programming MPPs is becoming easier due to the availability of languages
like Connection Machine Fortran (CMF) and High Performance Fortran
(HPF) that allow one to do SIMD and SPMD programming in a Fortran-like
environment. Though it is the authors’ view that CMF, a product of Thinking
Machines Corporation, is the most mature language of this type, HPF is
an emerging standard and it is expected that CMF will be HPF compliant
sometime in 1996. HPF is a language that includes Fortran 90 as a subset,
but it also contains some additional commands (such as the FORALL
which is a parallel DO) as well as compiler directives to specify how
data is to be distributed across processors. In fact, intelligently laying out
the data turns out to be a key consideration in this approach. Compared
with a Fortran 77 program, an HPF program uses array syntax whenever
possible (which is available in Fortran 90); it uses FORALL statements
instead of DO loops whenever possible; and it has compiler directives
interspersed among array declarations. Also, these programs often contain
calls to mathematical libraries, such as the CM Scientific Software Library
on the CM-5.

As an example of array layout, consider a program that integrates
the trajectories of 4096 particles having coordinates (x, px, y, Py, 2, Pz).
Suppose the data is stored in an array dimensioned a(6,4096). The compiler
directive “distribute a(* ,block)” would cause quantities specified by the first
dimension to reside on the same processor, while the quantities specified by
the second dimension would be stored in “blocks™ across processors. For
example, if 4 processors were in use, then the six coordinates of particles
1-1024 would reside on processor 1; particles 1025-2048 would reside on
processor 2; particles 2049—3072 would reside on processor 3; and particles
3073-4096 would reside on processor 4. This is shown in Table I.

TABLE 1 Layout of a two dimensional array distributed (*,block)

Processor 1 Processor 2 Processor 3 Processor 4
a(1-6,1) a(1-6,1025) a(1-6,2049) a(1-6,3073)
a(1-6,2) a(1-6,1026) a(1-6,2050) a(1-6,3074)
a(1-6,3) a(1-6,1027) a(1-6,2051) a(1-6,3075)

a(1-6,1023) a(1-6,2047) a(1-6,3071) a(1-6,4095)

a(1-6,1024) a(1-6,2048) a(1-6,3072) a(1-6,4096)

[368]/122 R.D. RYNE and S. HABIB

As a concrete example, consider the propagation of particles in a drift
space and the following subroutine:

M

subroutine drift(a,b,t)
c a(1-6,n) = initial (x,vx,y,vy,2z,vz) of nth particle
c b(1-6,n) = final (x,vx,y,vy,z,vz) of nth particle
real a,b,t
dimension a(6,10000000) ,b(6,10000000)
cmf$ layout a(:serial, :news)
cmf$ layout b(:serial, :news)
'hpf$ distribute a(*,block)
'hpf$ distribute b(*,block)
b(1,:)=a(1,:)+a(2,:)*t
b(2,:)=a(2,:)
b(3,:)=a(3,:)+a(4,:)*t
b(4,:)=a(4,:)
b(5,:)=a(5,:)+a(6,:)*t
b(6,:)=a(6,:)
return
end

In the above subroutine, the directives beginning with !hpf are HPF
compiler directives; those beginning with cmf are the equivalent directives in
CMF. Note the portability of this routine: It should compile without changes
on a workstation with Fortran 90 (since the compiler directives would be
interpreted as comments), on a multiprocessor workstation with HPF, and on
an MPP with CMF or HPF.

2 MODELING BEAM HALO IN ULTRA-LOW LOSS
ACCELERATORS

An area where MPPs have already had a significant impact is in modeling
beam halo in next-generation, moderate-to-high average power accelerators
that must operate with very low beam loss. This effort is motivated by

PARTICLE TRACKING USING PARALLEL PROCESSORS [369]/123

recent activity aimed at utilizing accelerator driven technologies for waste
transmutation, plutonium conversion, tritium production, fission energy
production, and the production of spallation neutrons for materials science
and biological science research. At the high energy end of a 1 GeV linac the
allowed beam loss is less than one nanoampere per meter. It is now known
that a major source of beam loss is the formation of a very low density
halo far from the beam core. Understanding and predicting beam halo and
finding ways to minimize it will have a major impact on the above-mentioned
technologies.

Using the resources of the Advanced Computing Laboratory (ACL) at
Los Alamos National Laboratory (LANL), we have developed tools that
enable one to model the dynamics of intense charged particle beams with
very high speed and accuracy. Previously, most linacs were designed using
particle simulation codes run with 10000 particles. Though this was adequate
in the past, in the new ultra-low loss regime it will be necessary to use at
least 10 million particles to predict the beam halo with confidence. Using
the CM-5 at the ACL, we have developed 1D, 2D, and 3D particle-in-cell
beam dynamics codes. These codes use symplectic, split-operator integration
algorithms to advance the particles.® This process is trivially parallel except
for the space charge calculation that is required. Though it is possible to
implement charge deposition and field interpolation in Fortran 90 (in the form
of statements involving indirect addressing of arrays), this is not very efficient.
Instead, we have implemented a procedure as described by Ferrell and
Bertschinger in the context of cosmology simulations.* Besides using particle
simulation codes, it is also possible to use direct Vlasov/Poisson solvers
to determine the evolution of an intense charged particle beam. This was
difficult in the past due to the large memory requirement of such programs.
Since the distribution function is represented by a grid on phase space, not
real space, the grid is 2N-dimensional for an N-dimensional problem. For
example, a 2D problem with a grid length of 256 requires 268 million grid
points. This is not unreasonable for an MPP having a few GBytes of memory.
A direct Vlasov/Poisson code looks very similar in structure to a particle
simulation code except that instead of using split-operator techniques to
advance particles they are used to advance the distribution function. For
example, a Vlasov/Poisson code solves the equation

af | -
o T@ - (V-9 f =0, 2

[370)/124 R.D. RYNE and S. HABIB

where f(¢,) is a distribution function on phase space (¢ = (X, p)). The
potential V is a sum of an externally applied potential and a space charge
potential which is obtained self-consistently from Poisson’s equation. A
second-order accurate stepping algorithm for the Vlasov/Poisson equation
is given by

f&H=MnfE t=0). 3
where the mapping M is given by
M) = o= 5 (B9 gt (VV-85) ,— 5 (B-37) @

It is important to note that, given an algorithm of order 2n, it is possible
to construct an algorithm of order 2n + 2 using a technique originally
due to Yoshida.>® Thus it is a simple matter to construct high order
particle simulation programs and Vlasov/Poisson codes. Using these particle
simulation techniques and direct methods we have also developed codes
to model large scale structure formation in the early universe, as well as
direct solvers to model quantum systems represented by a Schrodinger wave
function, a density matrix and a Wigner distribution function.

3 LONG TERM TRACKING

Compared with the multi-million particle simulations of intense beams
described in the previous section, there are significant differences in using
MPPs to perform long term tracking in circular machines. First, codes
written in CMF or HPF usually perform well only when they use large
amounts of memory, but tracking codes usually utilize only a few to a
few hundred particles and hence use little memory. Second, matrix codes
and Lie algebraic beam transport codes usually involve irregular data
movement, and this can cause excessive interprocessor communication and
poor performance. On the other hand high order codes would alleviate
the memory issue since they utilize somewhat long arrays. In a Lie
algebraic code the length of arrays as a function of order is shown in
Table II.

PARTICLE TRACKING USING PARALLEL PROCESSORS [3711/125

TABLE II Array length as a function of order in a Lie algebraic code

Order 3 4 5 6 7 8 9 10 11 12

Monomials 83 209 461 923 1715 3002 5004 8007 12375 18563

We thus come to the following conclusions: If one wants to perform long
term tracking with many (i.e. greater than 10000) particles, then one can
achieve good performance by parallelizing over particles. If one is using only
a few particles, then one can still achieve good performance by parallelizing
over the Lie polynomials. But if one is interested in tracking a small number
of particles to low order, than one is not likely achieve good performance on
an MPP using data parallel methods in CMF or HPF. It might be possible to
parallelize over particles using other methods as is described later.

As mentioned previously, Lie algebraic codes store polynomials as large
arrays where each element corresponds to a monomial. When performing a
ray trace one of the things that must be done is the numerical evaluation of
the monomials. That is, for a given (x, px, y, py, ¢, p;) one must compute
(x™, pi?, y™, pyt, 1", pi®), where the sum of the n; is less than or equal
to the order of the highest order polynomial. To see how this would be
accomplished, consider the following CM Fortran code which could appear
in a beam dynamics program using 4th order polynomials:

dimension g(209),nvbl(4,209),vec(0:6)
cnf$ layout g(:news)
cnf$ layout nvbl(:serial, :news)
forall(i=1:209)
#g(i)=vec(nvbl(1l,i))*vec(nvbl(2,1))
*vec(nvbl (3,1))*vec(nvbl(4,1i))

In the above, each 4-tuple of the array nvbl denotes a monomial. For
example, in the usual indexing scheme nvbl(1-4,31) is equal to (1,1,4,0),
which corresponds to the monomial x2 Py This code would execute properly
on a CM-5, but it would not be efficient due to the communication that it
generates. Namely, for a given index i the quantities vec(nvbl(1-4,i)) would
not be on the processor of the target element g(i). (On the CM-5 scalars
and small arrays are normally stored on the “front end” and not on the

[372)/126 R.D. RYNE and S. HABIB

processing elements.) The solution to this, on the CM-5, is to make an array
svec(0:6,209) that is 209 copies of vec by using the SPREAD command:
svec=spread (vec,ncopies=209,dim=2). Though this takes time,
it is acceptable so long as it is only done once and the routine is called many
times. Thus, a more efficient version of the code would use the following
FORALL statement:

forall(i=1:209)
#g(i)=svec(nvbl(1,i),i)*svec(nvbl(2,i),1)
*svec (nvbl(3,1i),i)*svec(nvbl(4,i),i)

This is an example of code that parallelizes over the order of the problem (i.e.
over the Lie polynomials), since the FORALL statement runs from one to
the length of the polynomials. Alternately, a code that tracked many particles
could parallelize over the particles. In that case no extra work (i.e. no explicit
parallelization using SPREAD commands) would be required.

Table III shows CM-5 timing results for computing the monomials of
256 particles 1000 times. The code is written to be parallel over the monomials
and two cases are shown, 6th order and 12th order, corresponding to array
lIengths of 923 and 18563, respectively. The program scales well (i.e. the
execution time is roughly inversely proportional to the number of processors)
only for the 12th order case. Table IV shows CM-5 timing results for comput-
ing monomials up to 6th order 1000 times. The code is written to be parallel

TABLE III 256 particles, 6th and 12th order, parallelized over monomials

PNs 6th order 12th order
32 10 sec, 74 MB 302 sec, 600 MB
64 11 sec, 147 MB 159 sec, 691 MB

128 10 sec, 294 MB 81 sec, 806 MB

TABLE IV 6th order, 1024 and 16384 particles, parallelized over particles

PNs 1024 particles 16384 particles
32 54 sec, 90 MB 408 sec, 578 MB
64 58 sec, 180 MB 221 sec, 628 MB

128 58 sec, 359 MB 126 sec, 743 MB

PARTICLE TRACKING USING PARALLEL PROCESSORS [3731/127

over particles, and two cases are shown, 1024 particles and 16384 particles.
The program scales well only for the 16384 particle case. Poor scaling using
data parallel techniques is usually associated with the processors not having
enough work to do, and this is normally accompanied by low memory usage.

Lastly we will consider the implementation of Lie algebraic ray tracing.
This discussion assumes some familiarity with Lie methods.” Consider, for
example, a 4th order, nonsymplectic ray trace:

. 2
e:f2: e:f3: e:f4:é_j %e:fz: (1+:f3i+'];.

YO+ fa:)g (5)

From a symbolic viewpoint, ¢/* acts first on ¢;, followed by e¢/3?) and
¢C/?_ But from a numerical viewpoint the situation is just the opposite, i.e.
the left-most Lie transformation acts first. In the first approach, one would
perform a ray trace by doing algebraic manipulations until the final step
of the calculation. First one would apply (14 : f4 :) to one of the ¢; to
obtain a polynomial; next one would apply (1+ : f3 : + : f3 2 /21 to
obtain a new polynomial; then one would transform the polynomial by the
matrix representation of ¢'/2'; and finally one would numerically evaluate the
polynomial to obtain the final value of ¢;. This could of course be done in
parallel for all six ¢; and all particles. In the second approach, one would
first multiply the six-vector { by the matrix representation of e'/2; next one
would apply the operator (14 : f3 : + : f3 :> /2!) to these six numbers to
obtain six new numbers; and finally one would apply (1+ : f4 :) to obtain
the final conditions of the ray trace. This could of course be done in parallel
for all particles. We are still in the process of studying the efficiency of
these two methods, but it is likely that the first method will be best when the
number of particles is large since all the algebraic manipulations, including
the time-consuming transformation of the polynomial by the matrix, will be
amortized over the particles. The second method is likely to be best when
the number of particles is small and the order is high, since one would avoid
having to transform a large polynomial by a matrix.

4 CONCLUSION

MPPs have the potential to outperform high end workstations by two to three
orders of magnitude, but achieving this is not always a simple matter. MPPs

[374]/128 R.D. RYNE and S. HABIB

have been used successfully to model beam dynamics and halo formation
in intense charged particle beams both in particle simulation codes and in
direct Vlasov/Poisson solvers. With time MPPs are becoming easier to use;
HPF is becoming a widespread standard and HPF compilers are maturing.
We have found that, with regard to long term tracking, it will be easy to
achieve good performance with MPPs if the number of particles is large
or the order is high. But it is our experience that data parallel techniques
have a certain amount of overhead associated with them, and if one were
to track 128 particles on 128 nodes the relative performance would be poor
compared with tracking a single particle on a single-CPU workstation. On
the other hand, it is possible to temporarily break out of CMF or HPF in
order to execute code on the nodes. Using this SPMD approach it should be
possible to exploit the coarse-grained parallelism of the particles to achieve
good performance even when the number of particles is equal to the number
of processors, if desired.

Acknowledgements

We thank Fillipo Neri for helpful conversations regarding Lie algebraic
tracking. This research was supported by the U.S. Department of Energy,
Office of Energy Research, through the Division of High Energy Physics and
the Division of Mathematical, Information, and Computational Sciences.
This research was performed in part using the resources located at the
Advanced Computing Laboratory of Los Alamos National Laboratory, Los
Alamos, NM 87545.

References

[1] J. Wang, P. Liewer and V. Decyk, Computer Physics Communications, 87 (1995), 35-53.

[2] VK. Decyk, Computer Physics Communications, 87 (1995), 87-94.

[3] E. Forest and R. Ruth, Physica D, 43, (1990) 105.

[4] R.Ferrell and E. Bertschinger, Int. J. Mod. Phys. C, §, (1994) 933-956.

[5]1 H. Yoshida, Phys. Lett. A, 150, (1990) 262.

[6] E. Forest et al., Phys. Lett. A, 158, (1991) 99.

[71 A. Dragt, In Physics of High Energy Particle Accelerators, AIP Conf. Proc. 87, R.A.
Carrigan et al., ed. (1982).

