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Abstract— This paper introduces a new computerized tool for
accurate manual measurement of features of retinal bifurcation
geometry, designed for use in investigating correlations between
measurement features and clinical conditions. The tool uses
user-placed rectangles to measure the vessel width, and lines
placed along vessel center lines to measure the angles. An
analysis is presented of measurements taken from 435 bifurca-
tions. These are compared with theoretical predictions based on
optimality principles presented in the literature. The new tool
shows better agreement with the theoretical predictions than a
simpler manual method published in the literature, but there
remains a significant discrepancy between current theory and
measured geometry.

I. INTRODUCTION

The retinal vascular network consists of branching arterial
and venous trees that originate from the optic nerve head
and progressively bifurcate into smaller branches that spread
out across the retina. The vascular network is believed to
be governed by physiological principles that optimize its
efficiency [1]. Theory suggests that the branching diameters
and angles at bifurcations should follow patterns that achieve
a compromise between the requirements for minimum lumen
volume, minimum pumping power and minimum drag force
on endothelial cells [2], [3], [4], although there may be
additional unmodelled principles at work (e.g. “watershed”
constraints to service the full retinal surface). Vascular dis-
eases may lead to damaging changes, and thus measurement
of the geometry may be diagnostic or predictive of pathology.
It is therefore of great interest to accurately measure the
vascular geometry [5]. This paper introduces a computer-
aided tool for manual measurement of retinal bifurcations
which is able to yield accurate measurements.

The rest of the paper is structured as follows: Section II
presents a background description of the geometric features
of retinal bifurcations together with a theoretical analysis of
the retinal vasculature. Section III describes the data set used.
Section IV introduces the new method for measuring retinal
bifurcation features; section V analyzes the performance of
the method by comparing results with theory and a bench-
mark study from the literature, and section VI concludes the
paper.
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II. PREVIOUS WORK

The basic measurements associated with a bifurcation, the
branching angles (θ, θ1 and θ2) and the diameters (d1, d2 and
d3) are shown in Figure 1. These are used to derive features
that reflect the relationships between the various segment
widths and the branching angles:

• The bifurcation index, λ = d2

d1
, [6] is also called the

degree of asymmetry; it is determined by dividing the
diameter of the smaller child, d2, by the diameter of the
larger child, d1; consequently, 0 < λ ≤ 1.

• The asymmetry ratio, α =
d2
2

d2
1

, is the cross-sectional area
of the smaller branch divided by that of the larger [2];
0 < α ≤ 1.

• The diameter ratios, λ1 = d1

d0
and λ2 = d2

d0
, are the

diameters of children divided by the diameter of the
parent segment at a bifurcation [7].

• The area ratio, β =
d2
1+d2

2

d2
0

, is the sum of the cross-
sectional areas of the two branches divided by that of
the parent segment at a bifurcation [2].

• The junction exponent(k), dk0 = dk1 + dk2 characterizes
the relationship between segment diameters.

Fig. 1. The basic bifurcation features: diameters (di) and bifurcation angles
(θ, θi).

The bifurcation index, λ, and the asymmetry ratio, α, are
measurements of the degree of asymmetry. Values of λ and
α near 1.0 indicate a rapid branching rate. The bifurcation is
symmetrical if its λ or α equal unity, which means that the
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widths of the branch segments are equivalent. If these factors
are less that unity then the bifurcation is asymmetric or
non symmetric; severe asymmetry holds when these factors
approach a zero value. Theory suggests that, in a healthy
retina, the branching angles and diameters should take values
that optimize the efficiency of the entire vascular network.
In particular, [8] suggests that the branching geometry
should show good agreement with the power law, where
the junction exponent k, given by rk0 = rk1 + rk2 (where
ri = di/2 is the radius of the vessel) should be equal to
3. In contrast, [9] proposed that if the branching angle is
considered, the optimum rate of energy is obtained when
r20 = r21 cos θ1 + r22 cos θ2. The power laws can be re-
expressed with respect to the asymmetry ratio to predict the
area ratio:

β =
d21 + d22
d20

= (1 + α)(1 + αk/2)−2/k, (1)

the diameter ratios:

λ1 =
d1
d0

= (1+αk/2)−1/k, λ2 =
d2
d0

= α1/2(1+αk/2)−1/k

(2)
and the bifurcation angles for minimum pumping power and
lumen volume:

cos θ1 =
λ−4
1 + 1− λ4

2λ−2
1

, cos θ2 =
λ−4
1 + λ4 − 1

2λ2λ−2
1

, (3)

and for minimum drag and lumen surface:

cos θ1 =
λ−2
1 + 1− λ2

2λ−1
1

, cos θ2 =
λ−2
1 + λ2 − 1

2λλ−1
1

, (4)

III. MATERIALS

To test the new tool we selected 21 retinal images from
the fundus image database of the diabetic retinopathy clinic
at Sunderland Eye Infirmary. Retinal photography was per-
formed on all patients according to a standardised protocol
as part of their routine clinical care. Mydriasis was induced
using tropicamide (1%) eye drops. All images were inde-
pendently graded by a qualified diabetic retinopathy grader
adopting the modified classification developed for the EU-
RODIAB Insulin-dependent diabetes mellitus complication
study [10]. They were graded as follows: 12 images are
normal, one has minimal non-proliferative retinopathy, three
have moderate non-proliferative retinopathy, two have severe
non-proliferative retinopathy and three have proliferative
retinopathy. There are 435 marked junctions. Approximately
2% of junctions are trifurcations [11]; we treat these as two
consecutive bifurcations, where the first child segment of the
first junction is the parent segment of the second junction.

IV. MARKUP TOOL FOR BIFURCATION GEOMETRY

We developed a new method to manually measure the
retinal vessel widths using a computerized tool. This task is
challenging as the vessels are typically blurred and curved.
The vessel widths are measured by aligning rectangles over
each segment; see Figure 2b. To place a rectangle the
observer first nominates two points along the approximate

segment centerline, and then a third on one of the segment
edges. An aligned rectangle is drawn based on these points.
The observer may then click to either side of the rectangle
to adapt its width, and can click around its corners to
adjust its direction. The observer keeps adapting the width
and direction parameters until satisfied that the rectangle is
correctly aligned. This method is effective as the width is
judged along a short length of the vessel, which is easier
than judging across a single profile (compare with [12], who
calculates the width on five local cross sections with two
pixel separation). The junction angles are nominated by first
clicking to place an intersection point, and then clicking to
place the ends of the three vessel centerlines; see figure
2a. The user may then click next to the intersection and
end points as many times as desired to adjust the positions.
The ability to refine the placement of rectangles and lines
is crucial in allowing users to obtain a satisfactory result.
The tool also presents the image junction zoomed up (using
8 × 4 blocks per pixel), but allows the user to place the
measurement aids at full screen resolution, and thus to sub-
pixel accuracy, which exploits the human ability to perceive
at this level by exploiting anti-aliasing effects. The tool is
implemented in MATLAB, and can be downloaded from
http://ReviewDB.lincoln.ac.uk

Fig. 2. (a) Defining bifurcation angles by drawing lines from the
intersection point along segment centerlines. (b) Defining segment widths
by placing three rectangles on the segment ends, choosing two points along
the centreline and a point on the edge of the segment.

V. RESULTS

Descriptive statistics of the 435 bifurcation measurements
are given in table I.

Min Max Mean Std E Std D Var
d0 4.67 19.78 9.47 0.13 2.69 7.23
d1 3.78 17.51 8.37 0.12 2.48 6.16
d2 1.06 12.91 6.34 0.08 1.72 2.97
θ 43.75 132.32 80.17 0.70 14.62 213.87
θ1 -18.09 81.26 24.82 0.76 15.82 250.14
θ2 10.17 97.72 55.34 0.82 17.16 294.52

TABLE I
DESCRIPTIVE STATISTICS OF RETINAL JUNCTION FEATURES: THE

PARENT WIDTH (d0), FIRST CHILD SEGMENT WIDTH (d1), SECOND

CHILD SEGMENT WIDTH (d2), BIFURCATION ANGLE (θ) AND BRANCH

ANGLES (θ1 , θ2).



Min Max Mean Std E Std D Var
α 0.01 1.00 0.63 0.01 0.22 0.05
λ 0.11 1.00 0.78 0.01 0.15 0.02
λ1 0.61 1.05 0.88 0.00 0.07 0.01
λ2 0.11 0.95 0.69 0.01 0.13 0.02

TABLE II
DESCRIPTIVE STATISTICS OF RETINAL BIFURCATION GEOMETRICAL

FEATURES: THE ASYMMETRIC RATIO (α), BIFURCATION INDEX (λ),
FIRST DIAMETER RATIO (λ1) AND SECOND DIAMETER RATIO (λ2).

When a parent segment branches, the larger diameter
branch should have a smaller deflection angle from the parent
segment direction than the smaller diameter branch [13].
Theory suggests some limitations on branching angles –
0 ≤ θ1 < 90◦, 0 ≤ θ2 ≤ 90◦, θ1 ≤ θ2. In fact, θ1 < 0
in about 3% of cases (when the vessel branches inside a
bend; see figure 3), which consequently leads to θ1 > θ,
and in 14% of cases θ1 > θ2. However, the rule that θ2 > 0
holds consistently. The results of [3] suggest that the vascular
junction is optimal when 75◦ < θ < 102◦; in our study, only
56% fall into this optimal range; in 37% θ < 75◦ and in 7%
θ > 102◦. Theoretically, we expect d0 ≥ d1 ≥ d2. In 1% of

Fig. 3. Very large branching angles situated on curving vessels.

cases we examined d0 < d1 , apparently due to a narrowing
of the parent (see figure 4); however, d0 > d2 consistently.

Fig. 4. Bifurcations where the parent segment diameter is smaller than the
first child segment diameter.

We also discovered that in 14% of cases θ1 > θ2, where
we accepted the definition that the first child is that with
the larger diameter, d1 > d2. However, bearing in mind that
vessel widths may vary along the length, an alternative and
more robust definition is formed by noting that each child

connects to a vascular sub-network, and that the first child is
the one with the bigger sub-network. Using this definition
we find that in 5% of cases d2 > d1 and 9% of cases
θ1 > θ2. These findings may be due to measurement errors,
natural variations, effects of vessel curvature or pathological
changes. Consequently, the features α, λ and λ1, which
theoretically should be less than one, sometimes exceed it.
These features depend on the order of the first and second
segments. The descriptive statistics for these features are
given in table II.

Despite its popularity and strong theoretical basis, the
junction exponent k is an over-sensitive parameter. Although
physiological principles suggest an optimal value of 3, values
between 1.0 and 5.0 have been reported in [14], [15], [16],
[17], [18]. In our study the estimated value of k varies even
more widely, with mean 3.96 and standard deviation 2.71,
and in some cases (where d0 < d1) is undefined. The area
ratio parameter, β, which also defines a relationship between
the radius of the three segments, is more stable and hence
useful. The literature [3] indicates that the junction is highly
optimal when the area ratio β is between 1.15 and 1.4 (for a
symmetrical bifurcation, β = 1.26). In our study, the mean
is 1.27, the standard deviation is 0.22, and the range is [0.66
1.86]. The optimality parameter (ρ) [19] which measures
deviation of junction exponents from the optimal value of
3, is calculated as:

ρ = [d30 − (d31 + d32)]
(1/3)/d0 (5)

In our study, the mean is −0.12, the standard deviation is
0.56, and the range is [−0.92 0.85]. Some theoretical studies
proposed that if the angle of branching is considered, the
optimum rate of energy [9] is obtained when

r20 = r21 cos θ1 + r22 cos θ2. (6)

The Descriptive statistics for these features are given in
table III.

Min Max Mean Std E Std D Var
β 0.66 1.86 1.27 0.01 0.22 0.05
k 0.00 20.57 3.94 0.12 2.57 6.60
ρ -0.92 0.85 -0.12 0.03 0.56 0.32

TABLE III
DESCRIPTIVE STATISTICS OF RETINAL BIFURCATION GEOMETRICAL

FEATURES: THE AREA RATIO (β), JUNCTION EXPONENT (k) AND

OPTIMALITY PARAMETER (ρ).

A. Theoretical Predictions

In this section we validate the tool by comparing the
measured junction features with predictions from theory,
following the methodology introduced in [5]. We also
benchmark against the results reported in [5]. The theoretical
predictions and measurements are presented in terms of β,
λ1, λ2, θ1, θ2 and θ against α in figures 5 and 6. Each graph
plots a pair of features against one another. The scatter points
indicate the measurements; the lines represent the theoretical



predicted curves: the solid line minimum lumen surface and
drag, the dashed line minimum lumen volume and pumping
power (see equations 3 and 4). To achieve a compromise
between these conflicting requirements, theory suggests that
the points should lie between these two lines.

The measured bifurcation features are characterized by
a high degree of variability. This may be due to a com-
bination of normal biological scatter [5] [20], the value of
the power law exponent k [4], experimental measurement
errors, or intrinsic vascular variability [21]. Some of the
variation may relate to pathology in those subjects with
diabetic retinopathy. Table IV shows the percentage of the
experimental data points within 10% deviation around the
theoretical curves. As a benchmark the corresponding statis-
tics from Zamir [5] are shown, although we note that this
uses a different different data set; there is thus an unknown
degree of intra-experimental variation in the results. Za-
mir extracted measurements by projecting the retinal image
at ×100 magnification, manually tracing the vessel edges
onto white paper, taking width measurements with vernier
calipers, and drawing centre lines and using a protractor to
measure angles.

Features Zamir Al-Diri
β - 42%
λ1 64% 75%
λ2 64% 76%
θ 60% 79%
θ1 32% 42%
θ2 48% 50%

TABLE IV
PERCENTAGE OF DATA POINTS LYING WITHIN A STRIP OF 10%

DEVIATION AROUND THE THEORETICAL CURVES. THE BENCHMARK

FIGURES ARE TAKEN DIRECTLY FROM ZAMIR CITEVAS3.

Zamir reported that 55% of β data points lie within 20%
deviation from the theoretical predictions; the corresponding
figure for the proposed technique is 76%. It is clear that a
greater proportion of the measurements taken using our tool
accord with theoretical predictions than were reported by
Zamir, and we speculate that this is due to greater accuracy
in the measurements. However, in the absence of a reference
standard it is not possible to verify this supposition.

VI. CONCLUSIONS
This paper introduces a tool for the accurate measurement

of retinal vascular junction geometry, and discusses the
features that may be extracted from these measurements.
The tool is intended to support research into the underlying
principles governing retinal bifurcation geometry, and to
investigate the effect of pathologies on it. The relationship
of the actual measurements taken on a sample data set to
theoretical predictions based on some previously published
optimality principles are studied. There is a good degree of
compliance with the theory, but with a significant amount
of unexplained variability. In future work we will investigate
whether a more sophisticated theoretical model is able to
provide better correlation between theory and experimental

a: β vs. α.

b: λ1 vs. α.

c: λ2 vs. α.
Fig. 5. Relationship between features derived from vessel widths. The the-
oretical curves assume k = 3; data points show the manual measurements
on the test data set.



a: θ1 vs α.

b: θ2 vs α.

c: θ vs α.

Fig. 6. Relationship between angles. The theoretical curves assume k = 3;
data points show the manual measurements.

measurements, analyze the performance of the tool for inter-
and intra-observer repeatability, and investigate the relation-
ship of various diseases to bifurcation geometry.
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