94 research outputs found

    Multiplexing using synchrony in the zebrafish olfactory bulb

    Get PDF
    In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist

    Perception versus reality: A National Cohort Analysis of the surgery-first approach for resectable pancreatic cancer

    Get PDF
    INTRODUCTION: Although surgical resection is necessary, it is not sufficient for long-term survival in pancreatic ductal adenocarcinoma (PDAC). We sought to evaluate survival after up-front surgery (UFS) in anatomically resectable PDAC in the context of three critical factors: (A) margin status; (B) CA19-9; and (C) receipt of adjuvant chemotherapy. METHODS: The National Cancer Data Base (2010-2015) was reviewed for clinically resectable (stage 0/I/II) PDAC patients. Surgical margins, pre-operative CA19-9, and receipt of adjuvant chemotherapy were evaluated. Patient overall survival was stratified based on these factors and their respective combinations. Outcomes after UFS were compared to equivalently staged patients after neoadjuvant chemotherapy on an intention-to-treat (ITT) basis. RESULTS: Twelve thousand and eighty-nine patients were included (n = 9197 UFS, n = 2892 ITT neoadjuvant). In the UFS cohort, only 20.4% had all three factors (median OS = 31.2 months). Nearly 1/3rd (32.7%) of UFS patients had none or only one factor with concomitant worst survival (median OS = 14.7 months). Survival after UFS decreased with each failing factor (two factors: 23 months, one factor: 15.5 months, no factors: 7.9 months) and this persisted after adjustment. Overall survival was superior in the ITT-neoadjuvant cohort (27.9 vs. 22 months) to UFS. CONCLUSION: Despite the perceived benefit of UFS, only 1-in-5 UFS patients actually realize maximal survival when known factors highly associated with outcomes are assessed. Patients are proportionally more likely to do worst, rather than best after UFS treatment. Similarly staged patients undergoing ITT-neoadjuvant therapy achieve survival superior to the majority of UFS patients. Patients and providers should be aware of the false perception of \u27optimal\u27 survival benefit with UFS in anatomically resectable PDAC

    Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes

    Get PDF
    Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22–1.82, P-value = 8.5 × 10−5]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93–3.51, P-value = 4.0 × 10−10). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Mixed hepatocellular and cholangiocarcinoma: a rare tumor with a mix of parent phenotypic characteristics

    Full text link
    In a wireless system with Intelligent Reflective Surfaces (IRS) containing many passive elements, we consider the problem of channel estimation. All the links from the transmitter to the receiver via each IRS elements (or groups) are estimated. As the estimation performance are dependent on the setting of the IRS, we design an optimal channel estimation scheme where the IRS elements follow an optimal series of activation patterns. The optimal design is guided by results for the minimum variance unbiased estimation. The IRS setting during the channel estimation period mimics a series of discrete Fourier transforms. We show theoretically and with simulations that the estimation variance is one order smaller compared to existing on/off methods proposed in the literature
    corecore