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Introductory Paragraph: 

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically 

aggressive.  To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 

three new genome-wide association studies (GWAS) and one prior scan, totaling 3,857 cases 

and 7,666 controls of European ancestry, with additional genotyping of nine promising SNPs in 

1,359 cases and 4,557 controls.  In our multi-stage analysis, five independent SNPs in four loci 

achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P=2.33x10-21), 

rs2523607 at 6p21.33 (HLA-B; 2.40x10-10), rs79480871 at 2p23.3 (NCOA1; P=4.23x10-8), and 

two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P=9.98x10-13 and 

P=3.63x10-11, respectively).  These data provide substantial new evidence for genetic 

susceptibility to this B-cell malignancy, and point towards pathways involved in immune 

recognition and immune function in the pathogenesis of DLBCL. 
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Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin 

lymphoma (NHL)1, has an aggressive clinical course2.  The risk of DLBCL is increased in 

individuals with a family history of NHL (odds ratio (OR)=1.4; 95%CI 1.1-2.0)3, supporting a 

genetic contribution.  Also, relatives of DLBCL patients are at elevated risk for both DLBCL 

(RR=9.8, 95%CI 3.1-31) and Hodgkin lymphoma (HL, RR=2.0, 95%CI 1.05-4.0), but not 

indolent lymphomas4.  Among candidate gene studies investigating susceptibility to DLBCL, 

only one locus, the LTA252G/TNF-308A haplotype on chromosome 6p21, reached genome-

wide significance (P=2.9x10-8)5.  In small GWAS of all NHL subtypes combined, no conclusive 

loci for NHL or DLBCL were identified in individuals of European background6-9, whereas a 

recent study conducted in East Asia identified a locus at 3q2710. 

To discover new DLBCL susceptibility loci, in stage 1, we genotyped 2,878 DLBCL cases 

and 2,854 controls of European ancestry from 22 studies using the Illumina OmniExpress 

Beadchip (Online Methods; Supplementary Table 1; Supplementary Figure 1).  A total of 

5,346 (93.3%) samples and 611,844 SNPs successfully passed rigorous quality control criteria 

(Online Methods; Supplementary Table 2).  To augment the number of controls, genotype 

data from 3,536 cancer-free controls previously analyzed with the Omni2.5 SNP microarray 

were folded into the analytical build11, resulting in a total of 2,661 cases and 6,221 controls for 

the stage 1 GWAS analysis (Supplementary Table 2).   

In stage 1, with adjustment for gender, age and four eigenvectors (Online Methods), we 

observed an enrichment of SNPs with smaller P-values compared to the null distribution in the 

Q-Q plot with a lambda of 1.016 (Supplementary Figure 2).  Two SNPs exceeded the 

threshold for genome-wide significance (P<5x10-8) whereas 20 SNPs showed highly suggestive 

associations (P<5x10-7) (Supplementary Figure 3).  All but one SNP mapped to the HLA 

region of chromosome 6 (29.5Mb to 33.2Mb on Human Genome version 19 coordinates). 

In stage 2, we included data from two unpublished and previously genotyped GWAS 

(GELA/EPIC and Mayo) plus one published GWAS (UCSF7), totaling 1,196 DLCBL cases and 
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1,445 controls (Online Methods; Supplementary Tables 1, 3).  Because different genotyping 

platforms were used, we imputed common SNPs for each study based on the 1000 Genomes 

Project release version 312 and IMPUTE213 (Supplementary Table 4).  In meta-analysis of all 

genotyped and high-quality imputed SNPs from stages 1 and 2 (N=8,363,971), we identified 19 

SNPs at genome-wide significance (P<5x10-8) (Supplementary Table 5) and 134 SNPs at a 

suggestive level of significance (P<5x10-7) (Supplementary Table 6); 123 of the 153 total SNPs 

mapped to the HLA region on chromosome 6.  Based on these results, we selected and 

successfully designed TaqMan primers for eight promising SNPs (P<5x10-6) outside the HLA 

region and one SNP from the HLA region for stage 3 de novo genotyping in an additional 1,359 

DLBCL cases and 4,557 controls (Online Methods; Supplementary Tables 1, 3).   

In a meta-analysis of all three stages (Supplementary Table 7), we identified four non-HLA 

SNPs in three novel loci at 6p25.3 (rs116446171, P=2.33x10-21) near EXOC2, 8q24.21 

(rs13255292, P=9.98x10-13; rs4733601, P=3.63x10-11) near PVT1 and MYC, and 2p23.3 

(rs79480871, P=4.23x10-8) near NCOA1 (Table 1; Figures 1a-c).  The two 8q24.21 SNPs 

displayed minimal linkage disequilibrium (LD, r2=0.03 in 1000 Genomes CEU population).  

Furthermore, in conditional analysis, both rs13255292 (conditional OR=1.22, P =1.39x10-12) and 

rs4733601 (conditional OR=1.18, P =2.84x10-10) remained genome-wide significant; together 

these data support the presence of two independent SNPs associated with DLBCL at 8q24.21.  

We also observed two suggestive SNPs (P<5x10-7) (Supplementary Table 8), one at 5q31.3 

(rs79464052, P=5.57x10-8) in ARAP3 (Supplementary Figure 4), and one at 3q13.33 

(rs2681416), although the latter SNP did not replicate in stage 2 or 3. 

Within the HLA region, rs2523607 (P=3.35x10-9) was carried forward for replication in stage 

3.  This SNP, localized at 6p21 in HLA-B, reached a combined P=2.40x10-10 in a meta-analysis 

of all three stages (Table 1; Figure 1d).  To further evaluate the association of HLA variants 

with DLBCL risk, we imputed classical HLA alleles at six loci (HLA-A, B, C, DRB1, DQA1, and 

DQB1) in the four GWAS datasets from stages 1-2 and conducted a meta-analysis (Online 
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Methods).  The imputation accuracy of HLA types was high (>95.2%) when compared to HLA 

sequencing (four-digit resolution) previously performed on a subset of the NCI samples14 

scanned as part of this study in stage 1 (Online Methods).  Of all SNPs and classical HLA 

alleles tested across the MHC, only the SNP rs2523607 (OR=1.34, P=3.3x10-9 in stages 1 and 

2) and the classical allele HLA-B*08:01 (OR=1.30, P=3.16x10-8 in stages 1 and 2) reached 

genome-wide significance (Supplementary Table 9).  These markers were in very high LD 

(r2=0.91), and after adjusting for the effect of HLA-B*08:01, the association of rs2523607 was 

greatly weakened (P=5.5x10-3). 

To gain additional insight into potential biological mechanisms, expression quantitative trait 

loci (eQTL) analyses were performed in two datasets consisting of lymphoblastoid cell lines 

(Online Methods).  In one of the datasets, significant associations were observed for 

rs116446171 with HIST1H3F and rs2523607 with HCG27 (Supplementary Table 10), while in 

the other dataset significant associations (FDR<0.05) were observed for rs2523607 (using 

rs3130923 as a proxy, r2=0.94) with LY6G6E, FLOT1, and RNF5 (Supplementary Table 11); 

no associations were observed for the other DLBCL-associated loci.   

To explore plausible mechanisms for the non-coding variants identified in our GWAS, the 

sentinel SNPs and those in high linkage disequilibrium (r2≥0.8) in Europeans in the 1000 

Genomes Project were analyzed using HaploReg v215  (Online Methods; Supplementary 

Table 12).  In addition, B-cell specific chromatin dynamics were assessed in a lymphoblastoid 

cell line (GM12878) using ChroMoS16, which utilizes the pre-computed chromatin state data for 

9 cell lines (including GM12878)17.  Of the 173 SNPs queried, 61 had information for GM12878 

(Supplementary Figure 5), and 3 SNPs were identified as active or weak promoters only in 

GM12878, while 22 SNPs were identified as strong or weak enhancers in GM12878.  In the 

other 8 cell lines, these regions were mostly defined as neutral, weakly transcribed or polycomb 

repressed.  These results suggest that some of our SNPs are within regions of active chromatin 

state predominantly within B cells and have a role in the B-cell cis-regulatory network.  These 
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results are consistent with growing evidence that disease variants from GWAS are more likely to 

map to active chromatin sites than neutral sites, as was shown recently for systemic lupus 

erythematosus17.  HaploReg showed that the majority of DLBCL-related SNPs were observed in 

regions of DNAse hypersensitivity common across multiple cell lines (e.g., rs116446171, 

rs2523607, rs13255292, rs4733601 near EXOC2, HLA-B, PVT1 or 7SK) whereas rs147193201 

was specific to B-cells.  The preponderance of DNAse hypersensitivity points to the existence of 

motifs, such as enhancers, silencers, promoters, insulators and other control elements of gene 

regulation.  The proteins bound at these sites are known transcription factors such as NF-κB, c-

MYC, GATA2 or genes that regulate transcription such as POL24H8, USF1 or POL2.  These 

suggested mechanisms of action will require laboratory follow-up. 

The susceptibility locus at 6p25.3 (rs116446171) maps near a plausible DLBCL candidate 

gene, EXOC2 (exocyst complex component 2), which is part of a large multiprotein complex 

responsible for vesicle trafficking and maintenance and intercellular transfer of viral proteins and 

virions18.  EXOC2 functions at the interface between host defense and cell death regulation19.  

EXOC2 interacts with Ral proteins, and the Ral-exocyst regulatory node has a crucial role in the 

maintenance of epithelial cell polarity, cell motility and cytokinesis20,21, and in proliferation and 

metastasis20,22.  It is notable that IRF4 is centromeric to EXOC2 and genetic variation in this 

region has been linked with chronic lymphocytic leukemia (CLL) risk23,24, and nominally to 

DLBCL risk25.  However, rs116446171 was not in LD with the IRF4 CLL GWAS SNP 

rs87207123.  

Two 8q24.21 variants (Figure 1b), rs13255292 and rs4736601 positioned at chr8:129.07Mb 

and chr8:129.26Mb, respectively, are approximately 1Mb telomeric to the 8q24 region linked 

with multiple cancers26, including CLL27.  Both variants are in close proximity to PVT1, which is a 

non-coding RNA implicated in the MYC activation.  Notably, a variant at 8q24.21 (rs2019960) 

has been linked to HL28, but the pair-wise r2 values of this SNP with both of our SNPs were low 

(r2<0.02).  The close proximity of PVT1 and the MYC oncogene, which is known to be 
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deregulated in Burkitt lymphoma29,30 and some DLBCLs 31,32, suggests that germline variation in 

this region could also contribute to DLBCL risk.  

The susceptibility locus at 2p23.3 (rs79480871) maps near NCOA1, nuclear receptor 

coactivator 1 and ITSN2, intersectin 2.  The former gene acts as a transcriptional coactivator for 

steroid and nuclear hormone receptors and is a member of the p160/steroid receptor coactivator 

(SRC) family33, while the latter gene encodes a protein that is a member of a family of proteins 

involved in clathrin-mediated endocytosis34 and may also augment the induction of T-cell 

receptor endocytosis35.  However, our bioinformatics analysis did not identify a clear link to 

genes in this region, supporting the need to refine this signal in future work. 

Through imputation with SNP2HLA,36 our strongest associations in the HLA region were with 

the HLA-B SNP rs2523607 and HLA-B*08:01, which are in very high LD, and based on our 

available sample size we cannot definitively rule out an orthogonal effect of rs2523607 in favor 

of HLA-B*08:01.  HLA-B encodes the HLA class I heavy chain paralogue, which 

heterodimerizes with a light chain (β2 microglobulin) to play a central role in presenting 

intracellularly processed self or foreign antigens to CD8+ cytotoxic T lymphocytes.  Class I 

molecules have been linked to a variety of immune-mediated diseases and cancers including 

HL, follicular lymphoma, DLBCL7,14,37,38, and more recently marginal zone lymphoma (Vijai, 

submitted).  Our results strongly suggest HLA-B*08:01 as the primary MHC association with 

DLBCL risk.  This classical allele is carried by the so-called ancestral 8.1 haplotype associated 

with other complex diseases (e.g., type I diabetes).39  Classical alleles of other HLA loci may 

also be involved (including those on the 8.1 haplotype), but larger sample sizes will be required 

to evaluate this question.   

Our study represents the largest DLBCL GWAS in individuals of European descent.  We did 

not observe a notable signal for a locus previously reported for DLBCL on 3q27 in East Asia10, 

rs6773854 (reported as OR=1.47, P=1.14x10-11), which was based on a discovery set of 253 B-

cell NHL cases (148 DLBCLs).  Although our current study had a similar MAF of 0.22 among 
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controls, we observed an OR=1.06 and a P-value of 0.81 for this SNP (Supplementary Table 

13), suggesting that the reported marker may not be correlated with the functional susceptibility 

allele in Europeans.  Of the two suggestive loci (P<5x10-7) reported in the literature8,40, we did 

not observe an association for rs751837 with DLBCL (OR=0.97, P=0.46), identified in a small 

Japanese GWAS (OR=3.51, P=3.3x10-7)40, but we did observe a consistent albeit attenuated 

association for rs10484561 (OR=1.18, P=1.5x10-4) which was initially reported on a subset of 

the studies in stage 1 (OR=1.36, P=1.46x10-7)8.  Previously, an InterLymph study of ~1,800 

DLBCLs and ~6,500 controls reported a strong signal for a dinucleotide haplotype in the 

LTA/TNF locus (LTA 252A>G/TNF–308G>A) at 6p21.3 (OR=1.31, P=2.9 x10-8)5.  Although 

nearly all of the cases from the previous publication were included in our current GWAS, the 

signal we observed overall was weaker (OR=1.15, P=8.5x10-4).  The attenuation was not 

explained by study design (case-control, cohort) or adjustment for population substructure (data 

not shown), but could be due to population sampling differences, heterogeneity, or chance.  

To explore the heritability of DLBCL, we estimated the contribution of all common SNPs to 

the variance explained by fitting all genotyped autosomal SNPs simultaneously using the 

method proposed by Yang et al41 in the Stage 1 dataset.  We estimated that common SNPs, 

including but not limited to the loci discovered in this study, explain approximately 16% of the 

variance for DLBCL overall.   

In summary, our findings represent an important step in defining the contribution of common 

genetic variants to risk for DLBCL.  Our findings are notable because we have newly defined 

associations of several regions with susceptibility to DLBCL, and these regions harbor plausible 

candidate genes for further investigation.  Further studies are required to discover additional 

common susceptibility loci as well as functional analyses that can explain the biological 

underpinnings of these new susceptibility loci.   
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Table 1. Association of novel loci and new independent SNPs wth risk of diffuse large B-cell lymphoma (DLBCL) 
    

Location 
Nearest 
gene(s) SNP Positiona 

Risk 
alleleb 

Other 
allele RAFc Stage 

No. Cases/ 
No. controls OR  (95% CI) P Phet I2 

6p25.3 EXOC2 rs116446171 484,453 G C 0.019 Stage 1 2,661/6,220 2.26 (1.82-2.81) 1.48x10-13 
  

      
0.018 Stage 2 1,194/1,443 2.70 (1.84-3.96) 3.99x10-7 

  
      

0.019 Stage 3 1,351/4,460 1.78 (1.29-2.46) 0.00040 
  

       
Combined 5,206/12,123 2.20 (1.87-2.59) 2.33x10-21 0.17 32.82 

8q24.21 PVT1 rs13255292 129,076,573 T C 0.321 Stage 1 2,661/6,221 1.19 (1.11-1.28) 1.25x10-6 
  

      
0.315 Stage 2 1,195/1,444 1.30 (1.14-1.47) 4.29x10-5 

  
      

0.330 Stage 3 1,322/4,498 1.22 (1.09-1.36) 0.001 
  

       
Combined 5,178/12,163 1.22 (1.15-1.29) 9.98x10-13 0.37 8.30 

  
rs4733601 129,269,466 A G 0.477 Stage 1 2,661/6,221 1.19 (1.11-1.27) 4.22x10-7 

  
      

0.479 Stage 2 1,196/1,445 1.19 (1.05-1.33) 0.004 
  

      
0.487 Stage 3 1,337/4,523 1.19 (1.07-1.32) 0.0016 

  
       

Combined 5,194/12,189 1.18 (1.11-1.25) 3.63x10-11 0.09 43.85 

6p21.33 HLA-B rs2523607 
     

31,322,790  A T 0.120 Stage 1 2,661/6,221 1.45 (1.29-1.64) 7.10x10-10 
  

      
0.123 Stage 2 1,195/1,444 1.14 (0.96-1.35) 0.14 

  
      

0.109 Stage 3d 1,114/1,102 1.25 (1.04-1.51) 0.019 
  

       
Combined 4,970/8767 1.32 (1.21-1.44) 2.40x10-10 0.26 21.63 

2p23.3 NCOA1 rs79480871 24694472 T C 0.076 Stage 1 2,660/6,220 1.35 (1.17-1.55) 3.51x10-5 
  

      
0.057 Stage 2 1,195/1,443 1.56 (1.22-1.99) 0.00037 

  
      

0.063 Stage 3 1,344/4,524 1.19 (0.98-1.46) 0.084 
                Combined 5,199/12,187 1.34 (1.21-1.49) 4.23x10-8 0.15 34.59 

aPosition according to human reference NCBI37/hg19; bAllele associated with an increased risk of DLBCL; cRisk allele frequency in controls; dNot genotyped in NCI Replication study. 
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FIGURE LEGEND 

Association results, recombination hot-spots, and linkage disequilibrium (LD) plots for 

the regions newly associated with diffuse large B-cell lymphoma (DLBCL)  (a-d) Top, 

association results of GWAS data from stage 1 DLBCL-GWAS (grey diamonds) and combined 

data of stages 1-3 (red diamond) are shown in the top panels with –log10(P) values (left y axis).  

Overlaid are the likelihood ratio statistics (right y axis) to estimate putative recombination 

hotspots across the region on the basis of 5 unique sets of 100 randomly selected control 

samples.  Bottom, LD heatmap based on r2 values from combined control populations for all 

SNPs included in the GWAS.  Shown are results for 6p25.3 (a), 8q24.21 (b), 2p23.36 (c), and 

p21.33 (d) regions.   
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ONLINE METHODS 

Stage 1:  DLBCL-GWAS 

As part of a larger initiative, we conducted a genome-wide association study (GWAS) of 

diffuse large B-cell lymphoma (DLBCL) using cases and controls of European descent from 22 

studies of non-Hodgkin lymphoma (NHL) (Supplementary Table 1), including nine prospective 

cohort studies, eight population-based case-control studies, and five clinic or hospital-based 

case-control studies.  All studies were approved by their respective Institutional Review Boards, 

and informed consent was obtained for all participants.  Cases were ascertained from cancer 

registries, clinics or hospitals, or through self-report verified by medical and pathology reports.  

To determine NHL subtype, phenotype data for all NHL cases were harmonized to the 

hierarchical classification proposed by the InterLymph Pathology Working Group42,43 based on 

the World Health Organization (WHO) classification44. 

All DLBCL cases with sufficient DNA (n=2,878) and a subset of controls (n=2,854) 

frequency matched by age, sex, and study to the entire group of NHL cases, along with 4% 

quality control duplicates, were genotyped on the Illumina OmniExpress at the NCI Cancer 

Genomic Research Laboratory (CGR).  Genotypes were called using Illumina GenomeStudio 

software, and quality control duplicates showed >99% concordance.  Monomorphic SNPs and 

SNPs with a call rate of <95% were excluded.  Samples with a call rate of ≤93%, mean 

heterozygosity <0.25 or >0.33 based on the autosomal SNPs, or gender discordance (>5% 

heterozygosity on X chromosome for males and <20% heterozygosity on the X chromosome for 

females) were excluded.  Furthermore, unexpected duplicates (>99.9% concordance) and first-

degree relatives based on identity by descent (IBD) sharing with Pi-hat>0.40 were excluded.  

Ancestry was assessed using the GLU struct.admix module based on the method by Pritchard 

et al.45 and participants with <80% European ancestry were excluded (Supplementary Figure 

6).  After exclusions, 2,661 (92.5%) cases and 2,685 (94.1%) controls remained 

(Supplementary Table 2).  Genotype data previously generated on the Illumina Omni2.5 from 
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an additional 3,536 controls from three of the studies (ATBC, CPSII, and PLCO) were also 

included11, resulting in a total of 2,661 cases and 6,221 controls for the stage 1 analysis.  Of 

these additional 3,536 controls, 703 (~235 from each study) were selected to be representative 

of their cohort and cancer-free11, while the remainder were cancer-free controls from an 

unpublished study of prostate cancer in the PLCO.  SNPs with call rate <95%, with Hardy-

Weinberg equilibrium P-value<1x10-6, or with a minor allele frequency <1% were excluded from 

analysis, leaving 611,844 SNPs for analysis (Supplementary Table 4).  To evaluate population 

substructure, a principal components analysis (PCA) was performed using the Genotyping 

Library and Utilities (GLU), version 1.0, struct.pca module, which is similar to EIGENSTRAT46.  

Plots of the first five principal components are shown in Supplementary Figure 7.  Association 

testing was conducted assuming a log-additive genetic model, adjusting for age, sex, and four 

significant principal components.  All data analysis and management was conducted using GLU.  

 

Stage 2: In Silico Analysis of Three Independent DLBCL GWAS  

Three independent DLBCL GWAS provided genotyping data for a meta-analysis,  

(Supplementary Table 1), which included data generated with the following commercial, SNP 

microarrays:  Illumina HumanHap 660W for Mayo (393 DLBCL and 172 controls), 

HumanCNV370-Duo for UCSF7 (254 DLBCLs and 748 controls), and HumanHap 610K for 

GELA (549 cases).  In all studies, subjects with a genotyping call rate <95%, duplicates, related 

individuals, and SNPs with a call rate <95% were removed prior to imputation (Supplementary 

Table 4).  The GELA study was conducted on cases only; controls were drawn from a pool of 

928 individuals from the French component of the EPIC cohort, who were previously scanned 

on Illumina HumanHap 660W or 610K47,48.  We subsequently chose a subset of 525 individuals 

with matched ancestry as determined from the principal components analysis.  In total, there 

were 1,196 cases and 1,445 controls in stage 2. 
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Imputation was conducted separately for each study in stages 1 and 2 using IMPUTE213 and 

the 1000 Genomes Project version 312.  The imputation analysis was restricted to common 

SNPs (cut-off MAF>0.01 with imputation accuracy INFO score >0.3).   

Association testing was conducted for each study using SNPTEST version 2, adjusting for 

age, sex, and any significant principal components.  We evaluated the top 10 eigenvectors for 

the GELA, Mayo and UCSF studies, respectively, in each baseline risk model adjusting for both 

age and gender.  Based on the significance level (P<0.05) of the regression coefficient for 

eigenvectors, we chose to adjust for three eigenvectors (EV1, EV7 and EV8) for GELA in the 

final association model, while no eigenvectors met criteria for adjustment of either the Mayo or 

UCSF studies.  

All meta-analyses were performed using the fixed effects inverse variance method based on 

the beta estimates and standard errors from each study. 

 

Stage 3: Replication studies and technical validation 

In stage 3, eight SNPs in the most promising loci outside of the HLA region and one SNP 

from the HLA region (Supplementary Table 7) were taken forward for de novo replication in an 

additional 1359 cases and 4557 controls from four studies (Supplementary Table 1), except for 

rs2523607, which was not genotyped in one of the studies (NCI replication).  Genotyping was 

conducted using custom TaqMan genotyping assays (Applied Biosystems) at the NCI Cancer 

Genomics Research Laboratory.  Each assay was optimized and validated with 270 HapMap 

samples and additional CEPH samples (SNP500Cancer), and these samples were used as 

genotyping controls for clustering and reproducibility.  All validated assays had 99% or higher 

concordance with HapMap and completion with control DNA was >97%.  Blind duplicates from 

stage 3 samples (64 pairs; ~3%) yielded 100% concordance.   

In technical validation, we observed a high correlation of genotyping calls from the 

OmniExpress microarray with confirmatory TaqMan assays in 455 stage 1 duplicate samples for 
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two genotyped (rs13255292, r2=1.00; rs4733601, r2=1.00) and four imputed (rs116446171, 

r2=0.92; rs2523607, r2=0.99; rs2681416, r2=1.00; rs79480871, r2=0.94) SNPs.  We also 

observed a high correlation of genotyping calls from the Illumina HumanHap 660W microarray 

with confirmatory TaqMan assays in stage 2 duplicate samples from the Mayo study (N=165) for 

two genotyped (rs13255292, r2=1.00; rs4733601, r2=1.00) and four imputed (rs116446171, 

r2=1.00; rs2523607, r2=1.00; rs79480871, r2=0.85; rs79464052, r2=0.95) SNPs. 

 

HLA imputations and analysis 

We imputed dense SNPs as well as classical HLA alleles (A, B, C, DRB1, DQA1, DQB1) 

and coding variants across the HLA region (chr6:29.5-33.2Mb, hg19) in the stage 1 (NCI) and 

stage 2 (MAYO, USCF2 and GELA/EPIC) studies using SNP2HLA36.  The imputation was 

based on a reference panel from the Type 1 Diabetes Genetics Consortium (T1DGC), and 

consisted of genotypes from 5,225 individuals of European descent who were typed for HLA-A, 

B, C, DQA1, DQB1, DRB1, DPA1, DPB1 4 digit alleles.  To assess imputation accuracy, we 

compared the imputed HLA alleles to HLA sequencing data (to 4 digits) available on a subset of 

samples from the NCI GWAS14, and found high concordance rates for HLA-A (97.3%), B 

(98.5%), C (98.1%) and DRB1 (97.5%).  Due to the limited number of SNPs (N=7,253) in the 

T1DGC reference set, imputation of HLA SNPs was conducted with IMPUTE2 and the 1000 

Genomes reference set as described above.  A total of 68,488 SNPs, 201 classical HLA alleles 

(two- and four-digit resolution) and 1,038 AA markers including 103 AA positions that were 

‘multi-allelic’ with three to six different residues present at each position, were successfully 

imputed (info score >0.3 for SNPs or r2>0.3 for alleles and AAs) and available for analysis.  

Multi-allelic markers were analyzed as binary markers (e.g., allele present or absent) and using 

a global test, and a meta-analysis was conducted where we tested SNPs, HLA alleles and AAs 

across the HLA region for association with DLBCL using PLINK49 or SNPTEST as described 

above.  
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Expression quantitative trait loci (eQTL) analysis 

To evaluate the effect of our top loci (and SNPs in LD based on r2>0.8 in HapMap-CEU 

release 28) on gene expression, we conducted an eQTL analysis on lymphoblastoid cell lines 

using two independent datasets:  Childhood asthma50 and HapMap51.  For the childhood asthma 

dataset 50, peripheral blood lymphocytes were transformed into lymphoblastoid cell lines for 830 

parents and offspring from 206 families of European ancestry.  Using extracted RNA, gene 

expression was assessed with the Affymetrix HG-U133 Plus 2.0 chip.  Genotyping was 

conducted using the Illumina Human1M Beadchip and Illumina HumanHap300K Beadchip, and 

imputation was performed using data from the 1kGP.  All SNPs selected for replication were 

tested for cis associations (defined as gene transcripts within 1 Mb), assuming an additive 

genetic model, adjusting for non-genetic effects in the gene expression value.  To gain insight 

into the relative importance of associations with our SNPs compared to other SNPs in the 

region, we also conducted conditional analyses, in which both the DLBCL SNP and the most 

significant SNP for the particular gene transcript (i.e., peak SNP) were included in the same 

model.  Only cis associations that reached P<6.8x10-5, which corresponds to a false-discovery 

rate (FDR) of 1%, are reported (Supplementary Table 10).  

The HapMap dataset consisted of a publicly available RNAseq dataset51  from transformed 

lymphoblastoid cell lines from 41 CEPH Utah residents with ancestry from northern and western 

Europe (HapMap-CEU), samples available from the Gene Expression Omnibus (GEO) 

repository (http://www. ncbi.nlm.nih.gov/geo) under accession number GSE16921.  Genotyping 

data for the same HapMap-CEU individuals were directly downloaded from HapMap 

(www.hapmap.org).  Since rs2523607, rs79480871 and rs116446171 were not genotyped in 

HapMap, we selected rs3130923, rs6746301 and rs7762424 as respective proxies, as they 

were the strongest linked SNPs available in HapMap (r2=0.94, 0.69 and 0.54 in 1kGP-CEU, 

respectively).  Correlation between expression and genotype for each SNP-probe pair was 

tested using the Spearman's rank correlation test with t-distribution approximation and were 
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estimated with respect to the minor allele in HapMap-CEU.  P-values were adjusted using the 

Benjamini-Hochberg false-discovery rate (FDR) correction and eQTLs were considered 

significant at an FDR≤0.05 (Supplementary Table 11).  

 

Bioinformatics:  ENCODE and Chromatin State Dynamics 

Using 1000 Genomes data, we identified SNPs with r2≥0.8 with our sentinel SNP that were 

reported to be non-synonymous or nonsense variants.  We utilized HaploReg v215, which is a 

tool for exploring non-coding functional annotation using ENCODE data, to evaluate the 

genome surrounding our SNPs (Supplementary Table 12).  To assess chromatin state 

dynamics, we used Chromos16, which has pre-computed data from ENCODE on 9 cell types 

based on Chip-Seq analyses17.  These pre-computed data have genome-segmentation 

performed using multivariate hidden Markov-model to reduce the combinatorial space to a set of 

interpretable chromatin states.  The output from Chromos separates data into 15 chromatin 

states corresponding to repressed, poised and active promoters, strong and weak enhancers, 

putative insulators, transcribed regions, and large-scale repressed and inactive domains 

(Supplementary Figure 5). 

 

Heritability analyses 

To estimate the contribution of all common SNPs to the variance explained, we used the 

method proposed by Yang et al41, which was extended to dichotomous traits52 and implemented 

in the Genome-wide Complex Trait Analysis (GCTA) software53.  The genetic similarity matrix 

was estimated from our stage 1 data using all genotyped autosomal SNPs with a minor allele 

frequency >0.01.  We used restricted maximum likelihood (REML), the default option for GCTA, 

to fit the appropriate variance components model that included the top 10 eigenvectors as 

covariates.  The final estimate of heritability on the underlying liability scale assumed that the 

lifetime risk of DLBCL was 0.007454.   
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Estimate of recombination hotspots 

To identify recombination hotspots in the region we used SequenceLDhot55, a program 

that uses the approximate marginal likelihood method56 and calculates likelihood ratio statistics 

at a set of possible hotspots.  We tested five unique sets of 100 control samples.  PHASE v2.1 

program was used to calculate background recombination rates57,58 and LD heatmap was 

visualized in r2 using snp.plotter program59. 
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