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Abstract
Evidence from a small number of studies suggests that longer telomere lengthmeasured in peripheral leukocytes is associated
with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation,
confounded by unmeasured environmental exposures and might miss time points for which prospective telomere
measurement would best reveal a relationship between telomere length and NHL risk.We performed an analysis of genetically
inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562
controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This
approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated
variant alleles an individual carrieswith the published change in kb of telomere length. The analysis of the telomere lengthGRS
resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds
ratio (OR) = 1.49, 95% CI 1.22–1.82, P-value = 8.5 × 10−5]. Subtype-specific analyses indicated that chronic lymphocytic leukemia
or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI
1.93–3.51, P-value = 4.0 × 10−10). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone
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lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that
favors longer telomere lengthmay increaseNHL risk, particularly risk of CLL/SLL, and are consistentwith earlier studies relating
longer telomere length with increased NHL risk.

Introduction
Telomeres are repetitive AGGGTT nucleotide sequences that pro-
tect the ends of chromosomes from degradation and shorten
during each round of cell division (1,2). Excessive telomere short-
ening may lead to cellular senescence, genetic instability and
apoptosis (3). Excessively long telomere length and upregulated
telomerase activity may result in immortalized cells with unlim-
ited potential for growth and proliferation (4,5). The standard
approach to measuring telomere length in large study popula-
tions is to measure circulating leukocyte telomere length by
multiplex quantitative polymerase chain reactions (6). Family
studies suggest that telomere length is highly heritable (7,8).
Recently, genome-wide association studies have identified nine
common single-nucleotide polymorphisms (SNPs) that are
robustly associated with circulating leukocyte telomere length
(Table 1) (9–11). When extrapolating association data with
qPCR-based telomere length measurements back to Southern
blot data, SNPs tagging these loci could explain up to 731 bp of
telomere length. This is equivalent to an approximately 20 year
or greater difference in age-related telomere attrition (10).
While the total variance in telomere length explained by these
variants is limited (∼1%), recent studies suggest that genetic
risk scores (GRSs) of these variants have utility as surrogatemea-
sures of peripheral leukocyte telomere length in deciphering as-
sociations with coronary artery disease (9), Alzheimer’s disease
(12), melanoma (13) and lung cancer (14,15).

A few studies have investigated the association of telomere
length measured in peripheral circulating leukocytes with non-
Hodgkin lymphoma (NHL) risk. A prospective study by Lan et al.
(16) of a group of 107 incident male NHL cases and 107 matched
controls found evidence that suggested longer relative telomere
length, as measured by monochrome multiplex qPCR, might be
associated with an increased risk of NHL and this association
was similar across common NHL subtypes. A subsequent nested
case–control study of 464 lymphoma cases and 464matched con-
trols from the European Prospective Investigation into Cancer
(EPIC) cohort also found evidence that suggests longer telomere
length is associated with an increased risk of B-cell lymphoma,
particularly for diffuse large B-cell lymphoma (DLBCL) and fol-
licular lymphoma (FL) (17). Further evidence from Epstein–Barr
virus-infected B-lymphocytes suggests that these cells express
a phenotype of progressively increasing telomere length accom-
panied by the accumulation of promyelocytic leukemia nuclear
bodies (18). It is important to note that these studies investigated
the relationship between telomere length and NHL risk, which is
distinct from the studies that investigated the relationship
between telomere length and NHL prognosis (19,20).

Accumulating evidence indicates that longer telomere length
may be associated with increased NHL risk although existing
observational studies on telomere length can be confounded by
insufficient adjustment for exposures that affect both NHL risk
and telomere length; for example, Epstein–Barr infection affects
telomere length (18) and NHL risk (21), but was not adjusted for
in prospective studies on telomere length and NHL risk (16,17).
Existing studies on telomere length and NLH risk also might
not capture the biological time points most relevant for deter-
mining NHL risk since single measurements of telomere length
can be influenced by changes in psychological stress (22),

exercise (23) and nutrition (24). In addition, the aforementioned
studies (16,17) lacked the statistical power to consider potential
subtype-specific associations with relative telomere length.
Here, we used telomere length-associated genetic variants to in-
vestigate an association between genetically inferred telomere
length and B-cell NHL in a large pooled study population that in-
cluded four major histologic subtypes of B-cell NHL. Specifically,
we used associations with individual telomere length-associated
variants as well as an aggregate GRS to examine whether telo-
mere length could modify the risk of four major types of B-cell
NHL. Improved understanding of how telomere length is linked
to NHL risk may provide a better insight into lymphomagenesis
and could serve as a biomarker for future NHL risk assessment.

Results
Our analysis consisted of a pooled sample of 10 102 NHL cases
and 9562 controls from samples of European descent (Table 2).
The NHL cases included 3104 chronic lymphocytic leukemia or
small lymphocytic lymphoma (CLL/SLL), 3652 DLBCL, 2521 FL
and 825 marginal zone lymphoma (MZL) cases. CLL and SLL are
grouped together by REAL and WHO classifications since they
are both different manifestations of the same neoplastic immu-
nophenotype inwhich SLL is the solid phase and CLL is the circu-
lating phase (25,26). There were approximately equal numbers of
men andwomen for NHL cases overall; however, thereweremore
men with CLL/SLL and fewer men with MZL than women. The
overall age range of participants was 15–94 years, with an overall
median age of 64 years.

An overall excess of SNP associations with P < 0.05 was
observed for the four NHL types combined (exact binomial
P-value = 0.008) and for CLL/SLL and FL subtypes (exact binomial
P-value = 0.001 and 0.008, respectively; Table 3). Associations
were found for NHL subtypes combined (rs10936599, rs9420907
and rs11125529), CLL/SLL (rs10936599, rs2736100, rs7675998 and
rs9420907), DLBCL (rs3027234) and FL (rs10936599, rs9420907 and
rs755017). No evidence of association was observed between any
of the nine telomere length-associated variants and MZL risk. As-
sociations generally suggested that longer telomere length in-
creased risk for certain NHL subtypes, with the exception of the
associations between NHL subtypes combined and rs11125529,
and FL and rs755017 where associations decreased risk.

Aggregate tests that compared a null model having only sex
and age with an expanded model that included all nine telomere
length-associated variants were also fit for the combined NHL
types and for each NHL subtype (Table 3). Statistically significant
aggregate associations of the nine telomere length-associated
variants were observed for the combined NHL subtypes and for
CLL/SLL and FL subtypes (P-values = 5.0 × 10−7, 4.7 × 10−9 and 0.01,
respectively). DLBCL and MZL subtypes were not significantly as-
sociated with the nine variants in aggregate. These tests of the as-
sociation with NHL overall and CLL/SLL and FL subtypes suggest
that, in aggregate, one or more of the nine telomere length-
associated variants are associated with overall NHL, CLL/SLL and
FL risk, but give no information about the individual SNPs driving
the association, the direction of the association or the effect size.

Analyses investigating the associations between a telomere
length-associated GRS and NHL risk were conducted in which a
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higher GRS indicates longer circulating leukocyte telomere
length and a lower GRS indicates shorter telomere length
(Table 3). Adjusting for sex and age, positive associations of the
GRS were observed (i.e. indicating an increased risk with longer
telomere length) for the four NHL types combined and for CLL/
SLL (P-values = 8.5 × 10−5 and 4.0 × 10−10, respectively). When
modeled as a decile of telomere length-associated GRS, a per de-
cile increase in GRS was significantly associated with an in-
creased risk of the four NHL subtypes combined (per decile
OR = 1.02, 95% CI 1.01–1.03, P-value = 0.0001) and with CLL/SLL
(per decile OR = 1.05, 95% CI 1.03–1.06, P-value = 2.37 × 10−9), but
not with the other NHL subtypes (Fig. 1). Comparing the highest
with the lowest decile of GRS, the ORs for the combined NHL sub-
types and for CLL/SLL were 1.25 (95% CI 1.10–1.42, P-value =
0.0006) and 1.60 (95% CI 1.32–1.93, P-value = 1.32 × 10−6), respect-
ively. When excluding CLL/SLL subtypes and doing a combined
DLBCL, FL and MZL analysis, the odds ratio (OR) for the telomere
length-associated GRS was 1.16 (95% CI 0.93–1.45, P-value = 0.18).

The Mendelian randomization analysis produced similar effect
estimates as the GRS associations. In addition, the four NHL sub-
types combined (likelihood-based method: OR = 1.50, 95% CI 1.22–
1.85, P-value = 1.3 × 10−4) and CLL/SLL subtypes (likelihood-based
method: OR= 2.68, 95% CI 1.96–3.67, P-value = 8.2 × 10−10) were sig-
nificantly associated with increasing telomere length (Table 3 and

Fig. 2). No significant Mendelian randomization effect estimates
were observed forDLBCL, FL orMZL subtypes ofNHL.Heterogeneity
tests were conducted to assess if the telomere length-associated
variant effects on telomere lengthwere proportional to their effects
on NHL risk. Significant evidence for heterogeneity was observed
for the four NHL subtypes combined, CLL/SLL and FL subtypes
(P-values = 1.9 × 10−4, 0.04 and 0.01, respectively; Table 3), with the
rs755017 (RTEL1) and rs11125529 (ACYP2) telomere length-asso-
ciated variants displaying the largest departures from expectation.

In the ASSET analysis, we further explored which of the four
examined subtypes of NHL are associated with telomere
length-associated variants and identifiedCLL/SLL as the predom-
inant B-cell NHL subtype included in themajority of the observed
associations (Table 4). For example, CLL/SLL appeared in the
optimal subset for six of the nine telomere length-associated
SNPs and in all four of the significant SNP associations. In
addition, the strongest P-value association with the telomere
length-associated GRS was observed for the CLL/SLL subtype.

To better characterize the association of telomere length with
NHL risk, we investigated themagnitude of the association of the
telomere length-associated GRS with NHL risk by sex and age
groups. These associationswerefirst investigated for all NHL sub-
types combined. Men had a stronger OR for the telomere length-
associated GRS (OR = 1.78, 95% CI 1.37–2.32, P-value = 2.0 × 10−5)

Table 1. Previously published variants associated with circulating leukocyte telomere length

SNP Position (GRCh37/hg19) Nearby gene Short allele Long allelea MAF Published βb Published P-value Reference

rs10936599 chr3:169492101 TERC T C 0.25 0.117 2.5 × 10−31 Codd et al. (9)
rs2736100 chr5:1286516 TERT A C 0.49 0.094 4.4 × 10−19 Codd et al. (9)
rs7675998 chr4:164007820 NAF1 A G 0.22 0.090 4.3 × 10−16 Codd et al. (9)
rs9420907 chr10:105676465 OBFC1 A C 0.14 0.083 6.9 × 10−11 Codd et al. (9)
rs8105767 chr19:22215441 ZNF208 A G 0.30 0.058 1.1 × 10−9 Codd et al. (9)
rs755017 chr20:62421622 RTEL1 A G 0.12 0.074 6.7 × 10−9 Codd et al. (9)
rs11125529 chr2:54475866 ACYP2 C A 0.14 0.067 4.5 × 10−8 Codd et al. (9)
rs6772228 chr3:58376019 PXK A T 0.05 0.120 3.9 × 10−10 Pooley et al. (10)
rs3027234 chr17:8136092 CTC1 T C 0.23 0.057 2.3 × 10−8 Mangino et al. (11)

MAF, minor allele frequency.
aLong allele is allele associated with longer telomere length.
bβ-estimate is reported in telomere kb per long allele.

Table 2. Descriptive characteristics of study participants with complete covariate information

CLL/SLL DLBCL FL MZL Combined NHL
Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

Sex
Males 1796 5374 1861 5452 1168 5209 334 4527 5159 6119
Females 1308 2297 1791 2617 1353 2551 491 1694 4943 3443
% Males 58% 70% 51% 68% 46% 67% 40% 73% 51% 64%

3104 7671 3652 8069 2521 7760 825 6221 10 102 9562
Age
10–20 0 5 25 6 0 20 1 4 26 21
20–30 5 49 118 60 18 98 11 41 152 113
30–40 36 181 268 222 138 273 25 129 467 332
40–50 277 509 420 633 387 652 81 316 1165 954
50–60 644 1323 790 1526 739 1416 170 968 2343 1957
60–70 1169 2956 1031 3083 753 2847 274 2520 3227 3452
70–80 849 2286 799 2205 415 2127 209 1953 2272 2364
80–90 123 357 195 330 69 323 54 286 441 364
90–100 1 5 6 4 2 4 0 4 9 5
Median 66 67 63 66 60 66 66 67 64 65

3104 7671 3652 8069 2521 7760 825 6221 10 102 9562
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Table 3. Associations of telomere length-associated variants and NHL risk

SNP (ref./alternate) All NHL subtypes CLL/SLL DLBCL FL MZL
OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

rs10936599 (T/C) 1.10 1.05–1.15 5.67e−5* 1.17 1.09–1.25 2.33e−5* 1.04 0.98–1.11 0.2158 1.09 1.01–1.18 0.0250* 1.06 0.94–1.20 0.3577
rs2736100 (A/C) 1.03 0.99–1.07 0.1719 1.13 1.06–1.20 5.86e−5* 1.01 0.95–1.06 0.8508 0.97 0.91–1.03 0.3081 1.03 0.92–1.14 0.6314
rs7675998 (A/G) 1.04 0.99–1.10 0.0819 1.12 1.04–1.20 0.0023* 1.04 0.98–1.12 0.2071 1.01 0.94–1.09 0.7602 1.00 0.88–1.13 0.9515
rs9420907 (A/C) 1.12 1.05–1.18 0.0002* 1.15 1.05–1.25 0.0014* 1.02 0.94–1.11 0.6504 1.11 1.01–1.22 0.0243* 1.11 0.96–1.28 0.1675
rs8105767 (A/G) 0.99 0.95–1.04 0.7452 1.02 0.95–1.09 0.6254 1.00 0.94–1.06 0.8817 0.99 0.92–1.06 0.7947 0.97 0.86–1.09 0.6392
rs755017 (A/G) 0.94 0.89–1.00 0.0561 0.97 0.88–1.06 0.5091 0.99 0.91–1.08 0.7729 0.85 0.77–0.94 0.0022* 0.91 0.77–1.07 0.2553
rs11125529 (C/A) 0.94 0.89–1.00 0.0352* 0.96 0.88–1.05 0.3658 0.95 0.88–1.03 0.2514 0.97 0.88–1.06 0.4997 0.90 0.77–1.05 0.1803
rs6772228 (A/T) 1.03 0.94–1.12 0.5516 1.05 0.92–1.19 0.5023 1.07 0.95–1.22 0.2729 1.02 0.88–1.18 0.8157 1.06 0.83–1.34 0.6381
rs3027234 (T/C) 1.04 0.99–1.09 0.1076 1.05 0.97–1.12 0.2236 1.07 1.00–1.15 0.0413* 1.01 0.93–1.09 0.8195 1.02 0.90–1.16 0.7738
Aggregate testa – – 5.00e−7* – – 4.71e−9* – – 0.3327 – – 0.0095* – – 0.6644
Genetic risk scoreb 1.49 1.22–1.82 8.54e−5* 2.60 1.93–3.51 3.96e−10* 1.28 0.97–1.70 0.0844 1.10 0.79–1.53 0.5640 1.16 0.69–1.95 0.5810
MR (IVW)c 1.49 1.22–1.81 1.01e−4* 2.60 1.93–3.51 3.29e−10* 1.28 0.97–1.70 0.0864 1.10 0.79–1.53 0.5659 1.17 0.69–1.98 0.5673
MR (likelihood)d 1.50 1.22–1.85 1.27e−4* 2.68 1.96–3.67 8.20e−10* 1.29 0.97–1.71 0.0841 1.11 0.79–1.54 0.5572 1.17 0.69–1.99 0.5627
Heterogeneitye – – 1.93e−4* – – 0.0380* – – 0.5180 – – 0.0070* – – 0.6170

Bold values designate statistically significant associations with a P-value <0.05

ref., short allele; alternate, long allele.
aAggregate test is a log likelihood ratio test comparing a model having all telomere length-associated SNPs and covariates with a null model with only sex and age.
bGenetic risk score ORs refer to a 1-kb increase in telomere length.
cInverse-variance weighted Mendelian randomization estimate for a 1-kb increase in telomere length.
dPooled estimate for the likelihood-based Mendelian randomization method for a 1-kb increase in telomere length.
eTest for significant heterogeneity across the nine SNP instruments used in the Mendelian randomization analysis.

*Statistical significance at the P < 0.05 level.
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than women did (OR = 1.17, 95% CI 0.86–1.59, P-value = 0.33);
however, the interaction between telomere length-associated
GRS and sex was marginally non-significant (P-value = 0.064;
Fig. 3A). This sex difference in the GRS–NHL association was
more pronounced for the CLL/SLL subtype, for which men had
an OR of 3.47 (95% CI 2.36–5.09, P-value = 2.25 × 10−10), whereas
women had an OR of 1.70 (95% CI 1.05–2.76, P-value = 0.03), with
a statistically significant interaction (P-value = 0.02). An inter-
action between the telomere length-associated GRS and sex was
also detected for the MZL subtype (P-value = 0.004), for which
men had a large telomere length-associated GRS effect (OR = 2.76,
95% CI 1.24–6.15, P-value = 0.01), whereas for women the effect
was significantly lower (OR= 0.59, 95% CI 0.29–1.19, P-value = 0.14).
Additionally, age-related effectmodificationwas suggested across
quartiles of age in which older age groups had a higher OR for the
telomere length-associated GRS association with a risk of com-
bined NHL subtypes (interaction P-value = 0.006; Fig. 3B). In the
youngest agequartile (individuals aged15–55), theOR for telomere
length-associated GRS was 1.09 (95% CI 0.73–1.62, P-value = 0.69),
whereas in the oldest age quartile (individuals aged 72–94) the
OR was 2.23 (95% CI 1.47–3.38, P-value = 0.0002). This interaction
of telomere length-associated GRS and age was also statistically
significant for the FL subtype (interaction P-value = 0.007).

Discussion
Our study of genetically inferred telomere length provides a
proxy measure of circulating leukocyte telomere length that

suggests a positive association between telomere length and
risk of four major types of B-cell NHL. While evidence suggests
that this association may be present in multiple NHL subtypes,
our associations with telomere length were most consistent
and strongest for CLL/SLL. Subset analyses by sex and age indi-
cate that telomere length may be particularly important for risk
of someNHL subtypes formen and for older individuals although
further replication is needed.

Recent genetic studies investigating the relationship between
telomere length and risk of cancer have suggested that longer
telomere length is associated with increased cancer risk. A
prior study by our group and another independent group found
evidence linking longer genetically inferred telomere length
with increased risk of lung cancer (14,15) and another group
has linked longer genetically predicted telomere length with in-
creased risk of melanoma (13). We now provide evidence that
longer genetically predicated telomere length may also be asso-
ciated with increased NHL risk, particularly for CLL/SLL. Exces-
sively long telomere length and upregulated telomerase activity
may be important for cancer risk since longer telomeres result
in greater replicative potential (4,5). Cells with a genetic ability
to maintain long telomeres may result in phenotypes with in-
creased potential for growth and proliferation which, when not
adequately regulated by cellular growth mechanisms, could
lead to greater carcinogenic potential.

Studies of measured telomere length are at risk for reverse
causation bias by early undetected disease and can be con-
founded by shared environmental exposures if the mechanism

Figure 1. ORs for each telomere length-associated GRS decile by NHL overall and subtype. The lowest GRS decile is used as the reference of comparison.
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of the exposure disease relationship is not mediated through al-
terations in telomere length. To our knowledge, our study is the
first to investigate the relationship between telomere length and
NHL risk using genetic proxies of telomere length. By using a
combination of nine telomere length-associated variants to
infer telomere length, our study suggests a genetic background
that favors longer telomere length to be associated with in-
creased NHL risk. Our genetic proxy of telomere length estimates
exposure to telomere length over an individual’s lifetime and
may have advantages over traditional measures of telomere
length that generally focus on one sample collection time
point. Our study has the added advantage of using variants asso-
ciated with leukocyte telomere length, the same progenitor cell
type for NHL. Also, by using a genetic proxy for telomere length,

it may be possible to isolate the effect of the genetically deter-
mined variance in TL from the effects of the variance in TL due
to non-genetic factors, such as aging, oxidative damage and
other relevant processes caused by environmental exposures,
or unknown genetic factors. Such studies could be instrumental
for identifying environmental or genetic risk factors that when
appropriately targeted by a focused intervention could reduce
NHL risk by its associated effect on telomere length.

The relationshipbetweengeneticallypredicted telomere length
and NHL reported in our study for NHL overall and CLL/SLL sub-
types is consistentwithpriorevidence fromstudies using telomere
length measured in white blood cell DNA. For NHL overall, we de-
tected quartile ORs (95% CI) of 1.0, 1.07 (0.98–1.16), 1.07 (0.99–1.16)
and 1.17 (1.08–1.26). A prior study of measured telomere length

Figure 2. Plots of the effect of each variant on telomere length and NHL risk overall and by the subtype. The X axis (G–X association) plots the previously published linear

regression β-estimates for a 1-kb change in telomere length for each telomere length-associated variant (Table 1). TheYaxis (G–Yassociation) plots the β-estimate from the

logistic regressionmodel for the association of each variant with NHL risk overall and by the subtype (Table 3). Error bars around each β-estimate indicate the uncertainty

of effect estimates. A best fit regression line and 95% confidence interval are plotted for NHL overall and each subtype using Mendelian randomization likelihood-based

estimates. P-values are from the Mendelian randomization likelihood-based method.
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andNHL risk by Lan et al. (16) (107NHL cases and 107matched con-
trols) foundquartileORs (95%CI) of 1.0, 1.1 (0.4–2.7), 1.8 (0.7–4.9) and
3.6 (1.4–8.9). Likewise, a study of measured telomere length and
NHL risk in the EPIC cohort (464 NHL cases and 464 matched con-
trols) found quartile ORs (95% CI) of 1.00, 1.66 (0.99–2.78), 1.80 (1.05–
3.11) and 3.20 (1.71–5.98) (17). While our quartile estimates for the
relationship between telomere length andNHLwere of lessermag-
nitude, as onemight expect given that a relatively small amount of
variance in measured telomere length explained by the GRS, the
trend was consistent with that seen in studies of measured telo-
mere length and the 95% confidence intervals generally over-
lapped. Differences in sample size, sample collection time points,
measurement techniques and covariates included in the model
may account for the differences observed between the studies
that directly measured telomere length and our approach that
used genetically predicted telomere length.

Our investigation is one of the first to establish a connection be-
tween telomere length-associated genetic variants and riskofNHL.
A recent CLLGWASdetected evidence fora signal at theTERC locus

(rs10936599) (27). The SNP associated with CLL at this locus is the
same telomere length-associated SNP reported by Codd et al. (9)
(rs10936599) and was included in our telomere length-associated
GRS. Our study provides replication of this association between
rs10936599 and CLL/SLL risk (P-value = 2.3 × 10−5). Additionally,
the TERT locus (rs10069690) has also been associated with
CLL/SLL risk (27,28). Our investigation also observed an association
at the TERT locus for CLL/SLL (rs2736100, P-value = 5.9 × 10−5), but
the two TERT variants are weakly correlated andmay tag different
TERT signals (D′ = 0.85, R2 = 0.28). When performing a follow-up
analysis that removes the TERC and TERT SNPs from the GRS
and separately adjusts for them as covariates in the analysis, the
seven SNP telomere length-associated GRS remains statistically
significant (OR = 1.93, 95% CI 1.29–2.89, P-value = 0.0014), suggest-
ing that an additional novel signal associated with CLL risk
remains in the telomere length-associated GRS. To our knowledge,
no prior associations with telomere length-associated variants
have been reported for DLBCL, FL and MZL subtypes of NHL. Add-
itional variation in telomere length important for NHL riskmay be

Table 4. ASSET meta-analysis of all possible NHL subtype subsets

SNP (ref./alternate)
OR 95% CI P-value NHL subsets

rs10936599 (T/C) 1.13 1.06–1.20 4.33 × 10−5 CLL/SLL, FL, MZL
rs2736100 (A/C) 1.12 1.05–1.19 9.76 × 10−4 CLL/SLL
rs7675998 (A/G) 1.11 1.01–1.22 0.04 CLL/SLL
rs9420907 (A/C) 1.18 1.08–1.28 1.57 × 10−4 CLL/SLL, MZL
rs8105767 (A/G) 0.96 0.00–Inf. 1.00 MZL
rs755017 (A/G) 0.89 0.79–1.01 0.06 FL, MZL
rs11125529 (C/A) 0.93 0.85–1.02 0.11 CLL/SLL, DLBCL, MZL
rs6772228 (A/T) 1.05 0.00–Inf 1.00 DLBCL, MZL
rs3027234 (T/C) 1.05 0.96–1.16 0.30 CLL/SLL, DLBCL
Genetic risk score 2.47 1.82–3.35 7.19 × 10−9 CLL/SLL

Bold values designate statistically significant associations with a P-value < 0.05

Figure 3. Telomere length GRS associations by strata of sex and age quartile. P-values are for interactions between telomere length-associated GRS and sex or age group.

Human Molecular Genetics, 2016, Vol. 25, No. 8 | 1671



attributable to other genetic variants that remain to be discovered.
An interesting observation from our study is that not all published
telomere length-associated variants have associations with NHL
subtypes that are proportional to their associations with telomere
length. This is particularly true for the rs755017 (RTEL1) and
rs11125529 (ACYP2) variants. Such variants may impact telomere
length through mechanisms that are not important for risk of the
four commonNHL subtypeswe studied and as such theMendelian
randomization method to estimate the effect of overall telomere
length on NHL risk that uses all nine telomere length-associated
variants may not be the optimal approach to accurately estimate
the magnitude of the true underlying causal effect of telomere
length on NHL risk. Future studies are needed to further refine ef-
fect estimates for the rs755017 (RTEL1) and rs11125529 (ACYP2)
variants and leukocyte telomere length as well as explore the het-
erogeneity we observed in the association of the nine telomere
length-associated variants and risk of the four common NHL sub-
types. In addition to telomere length, other aspects of telomeres,
such as maintenance of genome stability, chromosomal repair or
distinct biological processes tagged by the nine telomere length-
associated variants, may also be important for NHL risk.

NHL comprises several subtypes that may have different asso-
ciations with telomere length. A clear association was observed
with longer telomere lengthand increasedCLL/SLL risk in ourana-
lysis. DLBCL and FL results were less clear. For DLBCL, a single SNP
association was detected for one telomere length-associated vari-
ant, and a marginally statistically significant association was ob-
served for the GRS association. The FL subtype showed evidence
for three SNP associations and had a significant aggregate associ-
ation test, but the GRS association was null. No evidence of single
SNP associations was observed for telomere length-associated
variants with MZL risk, as perhaps we were underpowered to de-
tect associations for this subtype. Due to sample size limitations,
we were also not able to examine potential associations of telo-
mere length-associated polymorphisms with other less common
B-cell or T-cell NHL subtypes.

Associations were found to differ by sex and age. If replicated,
these resultsmay be useful for screening populationswhere telo-
mere length is more strongly associated with NHL risk. The asso-
ciation of the telomere length-associated GRS with risk of NHL
was particularly strong for men, especially for the CLL/SLL and
MZL subtypes. Additionally, results from individuals aged
72 years and over suggest that older individuals have elevated
estimates for their GRS associations. The biological rationale
for these observations is not well understood. Future studies of
telomere length and NHL risk that sample men and women
across a wide range of ages are needed to confirm these findings.

The abundance of single SNP associations with NHL risk, the
dose–response relationship by the decile of GRS and the agreement
in directionality of the GRS association with prior evidence from
prospective studies suggest that variation in telomere length tagged
by the nine telomere length-associated variants is important for
four of the most common B-cell lymphoma subtypes. Future func-
tional studies investigating the biological mechanisms in telomere
length captured by these genetic variants and their haplotypes will
be instrumental in better understanding telomere biology. In add-
ition, an improved understanding of the key molecular pathways
responsible for telomere lengthmay also be instrumental in identi-
fying important preventive strategies for NHL as well.

Materials and Methods
Participants anddata for this studyoriginate from four previously
published subtype-specific NHL genome-wide association

studies (GWASs) which included CLL/SLL (28), DLBCL (29), FL
(30) and MZL (31). Each NHL subtype-specific GWAS was a collec-
tion of cases of European descent from 22 studies of NHL, includ-
ing 9 prospective cohort studies, 8 population-based case–control
studies and 5 hospital or clinic-based case–control studies (Sup-
plementary Material, Table S1). All studies obtained informed
consent from the participants and were approved by the respect-
ive Institutional Review Boards.

In total, 3104 cases of CLL/SLL, 3906 cases of DLBCL, 2731 cases
of FL and 825 cases of MZL were extracted from stage 1 of the re-
spective GWAS analyses. NHL diagnoseswere verified bymedical
and pathology reports to meet InterLymph and World Health
Organization (WHO) criteria (32,33). A set of 9562 cancer-free con-
trols was also extracted from stage 1 of the NHL GWASs. Controls
included cancer-free representatives from each participating
NHL study population as well as additional cancer-free indivi-
duals from the α-Tocopherol, β-Carotene Lung Cancer Prevention
Study (ATBC), the American Cancer Society Cancer Prevention
Study II Cohort (CPS-II) and the Prostate, Lung, Colorectal and
Ovarian Cancer Screening Trial (PLCO). Further details on study
makeup andparticipants are described in the original GWASpub-
lications (28–31).

Briefly, DNAwas isolated from participants and genotyped on
commercially available Illumina SNP genotyping microarrays at
participating study centers. Standard quality control and filtering
was applied to called genotypes to ensure well-performing
samples and high-quality genotypes were reported. Genotype
imputation was performed with IMPUTE2 (34) using a hybrid of
the 1000 Genomes Project version 2 (February 2012 release) (35)
and the Division of Cancer Epidemiology and Genetics (DCEG)
European reference panels (36).

Genotypes were extracted for the nine previously identified
common SNPs associated with circulating leukocyte telomere
length (rs10936599, rs2736100, rs7675998, rs9420907, rs8105767,
rs755017, rs11125529, rs6772228 and rs3027234). Depending
on the genotyping platform of the contributing study different
combinations of telomere length-associated SNPs needed to be
imputed for each study. All imputed SNPs had IMPUTE2 info
scores >0.75 (Supplementary Material, Table S2), indicating that
the imputation for these variants had a high degree of accuracy.
There was no evidence of significant departures from Hardy–
Weinberg proportions for control participants (P-values >0.01).

GRSswere calculated for telomere length-associated variants.
To calculate a GRS for the ith individual from the nine telomere
length-associated variants we used the following formula:

GRSi ¼
X9

j¼1

wjxij;

where xij is the number of risk alleles for the jth SNP of the ith
subject (xij = 0, 1 or 2) and wj is the weight or coefficient for the
jth SNP. For the weighted coefficients, wj, of each telomere
length-associated allele, we used the previously published telo-
mere length-associated β-estimates scaled to kb of telomere
length per length allele (Table 1) (9–11). Weighting typically re-
sults in greater specificity of the GRS by assigning more weight
to variants with stronger effects.

Only participants with complete genotyping, histology (for
cases) and covariate (age and sex) information were included in
the analysis (10 102 NHL cases and 9562 controls). Logistic regres-
sion models calculating ORs and 95% confidence intervals (95%
CI) to investigate combined and subtype-specific NHL risk were
adjusted for sex and a continuous variable for age, unless
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otherwise noted. Likelihood ratio tests were used to assess statis-
tical significance of aggregations of the nine telomere length-as-
sociated variants on NHL risk by comparing null models with
fitted models of the telomere length-associated variants.

In addition to the GRS approach, we estimated the effect of
telomere length on risk of the four subtypes of NHL using two dif-
ferent Mendelian randomization methods that use summary as-
sociation for each SNP: an inverse-variance weighting method
and a likelihood-based method. The methods use average sum-
mary association estimates to estimate causal effects and are
described in greater detail by Burgess et al. (37). Both the
inverse-variance and likelihood-based methods give similar
estimates and precision to the least squares method for individ-
ual-level data, but have the advantage of using effect estimates
from other studies (37). We accessed the online web tool by
Burgess et al. at https://sb452.shinyapps.io/summarized/ on
16 December 2015 to calculate both Mendelian randomization
estimates. Several conditions are necessary for these Mendelian
randomization effect estimates to have a causal interpretation:
(1) the telomere length-associated variants need to be associated
with telomere length in leukocytes, (2) the telomere length-
associated variants are not associated with other factors that
are associated with both telomere length and NHL risk and (3)
the telomere length-associated SNPs onlyaffectNHL risk through
telomere length. While these conditions are not readily testable,
tests of heterogeneity can be conducted to assess if a telomere
length-associated variant’s effect on telomere length is propor-
tional to its effect on NHL risk.

An additional analysis using ASSET (38) meta-analysis soft-
ware further investigates which of the four subtypes of NHL
were associated with each telomere length-associated SNP as
well as the overall GRS. ASSET finds the optimal subset of NHL
subtypes that are associated with a SNP or GRS by performing
meta-analyses that span all possible combinations of NHL
subtypes and efficiently adjusts for multiple comparisons. All
ASSET analyses were adjusted for age and sex.

All plotting and statistical analyses were performed on a
64-bitWindows build of R version 3.0.1 ‘Good Sport’ (39). Exact bi-
nomial tests were carried out using the binom.test function in
R. All statistical tests were two-sided with P < 0.05 considered
statistically significant.

Supplementary Material
Supplementary Material is available at HMG online.
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