1,245 research outputs found

    Dynamics of metal clusters in rare gas clusters

    Full text link
    We investigate the dynamics of Na clusters embedded in Ar matrices. We use a hierarchical approach, accounting microscopically for the cluster's degrees of freedom and more coarsely for the matrix. The dynamical polarizability of the Ar atoms and the strong Pauli-repulsion exerted by the Ar-electrons are taken into account. We discuss the impact of the matrix on the cluster gross properties and on its optical response. We then consider a realistic case of irradiation by a moderately intense laser and discuss the impact of the matrix on the hindrance of the explosion, as well as a possible pump probe scenario for analyzing dynamical responses.Comment: Proceedings of the 30th International Workshop on Condensed Matter Theories, Dresden, June 05 - 10, 2006, World Scientific. 3 figure

    Molecular-dynamics simulation of thin-film growth by energetic cluster impact

    Get PDF
    Langevin-molecular-dynamics simulations of thin-film growth by energetic cluster impact were carried out. The impact of a Mo 1043 cluster on a Mo(001) surface was studied for impact energies of 0.1, 1, and 10 eV/atom using the Finnis-Sinclair many-body potential. The characteristics of the collision range from a soft touchdown at 0.1 eV/atom, over a flattening collision at 1 eV/atom, to a meteoric impact at 10 eV/atom. The highest energy impact creates a pressure of about 100 GPa in the impact zone and sends a strong shock wave into the material. The cluster temperature reaches a maximum of 596 K for 0.1 eV/atom, 1799 K for 1 eV/atom, and 6607 K for 10 eV/atom during the first ps after the touchdown. For energies of 1 and 10 eV/atom the cluster recrystallizes after 20 ps. The consecutive collision of 50 Mo 1043 clusters with a Mo(001) surface at T=300 K was simulated for the three impact energies. The formation of a porous film is calculated for clusters impinging with low kinetic energy, while for the clusters with the highest energy a dense mirrorlike film is obtained, in good agreement with experiment

    Impact of Manganese and Chromate on Specific DNA Double-Strand Break Repair Pathways

    Get PDF
    Manganese is an essential trace element; nevertheless, on conditions of overload, it becomes toxic, with neurotoxicity being the main concern. Chromate is a well-known human carcinogen. The underlying mechanisms seem to be oxidative stress as well as direct DNA damage in the case of chromate, but also interactions with DNA repair systems in both cases. However, the impact of manganese and chromate on DNA double-strand break (DSB) repair pathways is largely unknown. In the present study, we examined the induction of DSB as well as the effect on specific DNA DSB repair mechanisms, namely homologous recombination (HR), non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ). We applied DSB repair pathway-specific reporter cell lines, pulsed field gel electrophoresis as well as gene expression analysis, and investigated the binding of specific DNA repair proteins via immunoflourescence. While manganese did not seem to induce DNA DSB and had no impact on NHEJ and MMEJ, HR and SSA were inhibited. In the case of chromate, the induction of DSB was further supported. Regarding DSB repair, no inhibition was seen in the case of NHEJ and SSA, but HR was diminished and MMEJ was activated in a pronounced manner. The results indicate a specific inhibition of error-free HR by manganese and chromate, with a shift towards error-prone DSB repair mechanisms in both cases. These observations suggest the induction of genomic instability and may explain the microsatellite instability involved in chromate-induced carcinogenicity

    A Simple Theory of Condensation

    Full text link
    A simple assumption of an emergence in gas of small atomic clusters consisting of cc particles each, leads to a phase separation (first order transition). It reveals itself by an emergence of ``forbidden'' density range starting at a certain temperature. Defining this latter value as the critical temperature predicts existence of an interval with anomalous heat capacity behaviour cpΔT1/cc_p\propto\Delta T^{-1/c}. The value c=13c=13 suggested in literature yields the heat capacity exponent α=0.077\alpha=0.077.Comment: 9 pages, 1 figur

    High-Throughput Omics Technologies: Potential Tools for the Investigation of Influences of EMF on Biological Systems

    Get PDF
    The mode of action of a huge amount of agents on biological systems is still unknown. One example where more questions than answers exist is covered by the term electromagnetic fields (EMF). Use of wireless communication, e.g. mobile phones, has been escalated in the last few years. Due to this fact, a lot of discussions dealt with health consequences of EMF emitted by these devices and led to an increased investigation of their effects to biological systems, mainly by using traditional methods. Omics technologies have the advantage to contain methods for investigations on DNA-, RNA- and protein level as well as changes in the metabolism

    Women's Perceptions and Misperceptions of Male Circumcision: A Mixed Methods Study in Zambia.

    Get PDF
    Women's perceptions of male circumcision (MC) have implications for behavioral risk compensation, demand, and the impact of MC programs on women's health. This mixed methods study combines data from the first two rounds of a longitudinal study (n = 934) and in-depth interviews with a subsample of respondents (n = 45) between rounds. Most women correctly reported that MC reduces men's risk of HIV (64% R1, 82% R2). However, 30% of women at R1, and significantly more (41%) at R2, incorrectly believed MC is fully protective for men against HIV. Women also greatly overestimated the protection MC offers against STIs. The proportion of women who believed MC reduces a woman's HIV risk if she has sex with a man who is circumcised increased significantly (50% to 70%). Qualitative data elaborate women's misperception regarding MC. Programs should address women's informational needs and continue to emphasize that condoms remain critical, regardless of male partner's circumcision status

    Efficiency of different selection strategies against boar taint in pigs

    Get PDF
    The breeding scheme of a Swiss sire line was modeled to compare different target traits and information sources for selection against boar taint. The impact of selection against boar taint on production traits was assessed for different economic weights of boar taint compounds. Genetic gain and breeding costs were evaluated using ZPlan+, a software based on selection index theory, gene flow method and economic modeling. Scenario I reflected the currently practiced breeding strategy as a reference scenario without selection against boar taint. Scenario II incorporated selection against the chemical compounds of boar taint, androstenone (AND), skatole (SKA) and indole (IND) with economic weights of −2.74, −1.69 and −0.99 Euro per unit of the log transformed trait, respectively. As information sources, biopsy-based performance testing of live boars (BPT) was compared with genomic selection (GS) and a combination of both. Scenario III included selection against the subjectively assessed human nose score (HNS) of boar taint. Information sources were either station testing of full and half sibs of the selection candidate or GS against HNS of boar taint compounds. In scenario I, annual genetic gain of log-transformed AND (SKA; IND) was 0.06 (0.09; 0.02) Euro, which was because of favorable genetic correlations with lean meat percentage and meat surface. In scenario II, genetic gain increased to 0.28 (0.20; 0.09) Euro per year when conducting BPT. Compared with BPT, genetic gain was smaller with GS. A combination of BPT and GS only marginally increased annual genetic gain, whereas variable costs per selection candidate augmented from 230 Euro (BPT) to 330 Euro (GS) or 380 Euro (both). The potential of GS was found to be higher when selecting against HNS, which has a low heritability. Annual genetic gain from GS was higher than from station testing of 4 full sibs and 76 half sibs with one or two measurements. The most effective strategy to reduce HNS was selecting against chemical compounds by conducting BPT. Because of heritabilities higher than 0.45 for AND, SKA and IND and high genetic correlations to HNS, the (correlated) response in units of the trait could be increased by 62% compared with scenario III with GS and even by 79% compared with scenario III, with station testing of siblings with two measurements. Increasing the economic weights of boar taint compounds amplified negative effects on average daily gain, drip loss and intramuscular fat percentag
    corecore