8,307 research outputs found

    Will at least one of the Higgs bosons of the next-to-minimal supersymmetric extension of the Standard Model be observable at LEP2 or the LHC?

    Get PDF
    We demonstrate that there are regions of parameter space in the next-to-minimal (i.e. two-Higgs-doublet, one-Higgs-singlet superfield) supersymmetric extension of the SM for which none of the Higgs bosons are observable either at LEP2 with s=192GeV\sqrt{s}=192 GeV and an integrated luminosity of L=1000inversepbL=1000 inverse pb or at the LHC with L=600inversefbL=600 inverse fb.Comment: 6 pages, full postscript file also available via anonymous ftp at ftp://ucdhep.ucdavis.edu/gunion/nmssm_sm96.ps To appear in ``Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics'

    Radio Frequency Interference /RFI/ design guide for aerospace communications systems

    Get PDF
    Radio frequency interference design guide for aerospace communications system

    Mass-degenerate Higgs bosons at 125 GeV in the Two-Higgs-Doublet Model

    Get PDF
    The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h --> gamma\gamma events above the Standard Model (SM) expectations; whereas no significant excess is observed in h --> ZZ* --> {four lepton} events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is a SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two Higgs doublet model, the observed \gamma\gamma and ZZ* --> {four lepton} data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of \sin(\beta-\alpha) near unity and 0.7 < \tan\beta < 1. An enhanced \gamma\gamma signal can also arise in cases where m_h ~ m_H, m_H ~ m_A, or m_h ~ m_H ~ m_A. Since the ZZ* --> {four lepton} signal derives primarily from a SM-like Higgs boson whereas the \gamma\gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* --> {four lepton} and \gamma\gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future.Comment: 18 pages, 19 pdf figures, v2: references added, v3&v4: added refs and explanation

    Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in e−e−e^-e^- Scattering

    Get PDF
    The goal of this article is to derive the Feynman rules involving charginos, neutralinos, double charged gauge bosons and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we will calculate the production of a double charged chargino with a neutralino and also the production of a pair of single charged charginos, both in an electron- electron e−e−e^-e^- process.Comment: 18 pages, 8 figures, 2 table

    Probing wrong-sign Yukawa couplings at the LHC and a future linear collider

    Full text link
    We consider the two-Higgs-doublet model as a framework in which to evaluate the viability of scenarios in which the sign of the coupling of the observed Higgs boson to down-type fermions (in particular, bb-quark pairs) is opposite to that of the Standard Model (SM), while at the same time all other tree-level couplings are close to the SM values. We show that, whereas such a scenario is consistent with current LHC observations, both future running at the LHC and a future e+e−e^+ e^- linear collider could determine the sign of the Higgs coupling to bb-quark pairs. Discrimination is possible for two reasons. First, the interference between the bb-quark and the tt-quark loop contributions to the gghggh coupling changes sign. Second, the charged-Higgs loop contribution to the γγh\gamma \gamma h coupling is large and fairly constant up to the largest charged-Higgs mass allowed by tree-level unitarity bounds when the bb-quark Yukawa coupling has the opposite sign from that of the SM (the change in sign of the interference terms between the bb-quark loop and the WW and tt loops having negligible impact).Comment: 28 pages, 21 figure

    Scrutinizing the Alignment Limit in Two-Higgs-Doublet Models. Part 2: mH=125m_H=125 GeV

    Full text link
    In the alignment limit of a multi-doublet Higgs sector, one of the Higgs mass eigenstates aligns in field space with the direction of the scalar field vacuum expectation values, and its couplings approach those of the Standard Model (SM) Higgs boson. We consider CP-conserving Two-Higgs-Doublet Models (2HDMs) of Type I and Type II near the alignment limit in which the heavier of the two CP-even Higgs bosons, HH, is the SM-like state observed with a mass of 125 GeV, and the couplings of HH to gauge bosons approach those of the SM. We review the theoretical structure and analyze the phenomenological implications of this particular realization of the alignment limit, where decoupling of the extra states cannot occur given that the lighter CP-even state hh must, by definition, have a mass below 125 GeV. For the numerical analysis, we perform scans of the 2HDM parameter space employing the software packages 2HDMC and Lilith, taking into account all relevant pre-LHC constraints, constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well as the most recent limits coming from searches for heavy Higgs-like states. Implications for Run 2 at the LHC, including expectations for observing the other scalar states, are also discussed.Comment: 44 pages, 27 figures; v2: references added, some updated constraint
    • …
    corecore