10 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars

    No full text
    This paper presents test results and code predictions of four continuously and two simply supported concrete slabs reinforced with basalt fibre reinforced polymer (BFRP) bars. One continuously supported steel reinforced concrete slab was also tested for comparison purposes. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over BFRP reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. Furthermore, the over reinforced BFRP reinforced concrete slab at the top and bottom layers showed the highest load capacity and the least deflection of all BFRP slabs tested. All continuous BFRP reinforced concrete slabs failed owing to combined shear and flexure at the middle support region. ISIS-M03-07 and CSA S806-06 design guidelines reasonably predicted the deflection of the BFRP slabs tested. However, ACI 440-1R-06 underestimated the BFRP slab deflections and overestimated the moment capacities at mid-span and over support sections
    corecore