50 research outputs found

    Amplifying chance for positive action and serendipity by design

    Get PDF
    In recent years, there has been an increased focus on information encountering and serendipity within information behavior research and practice. Serendipity has the potential to facilitate creativity and innovation in various spheres, including in libraries, archives and museums. However, do we wait for chance to occur, or can serendipity be designed and facilitated? What are the characteristics of systems that support serendipitous discovery, and what methods can be used to study its occurrence? Extending and building on the concepts and definitions introduced at a 2016 ASIS&T Annual Meeting panel led by Erdelez, we feature in this 40‐min panel innovative work that creates opportunities for discovery within research spaces. Attendees engage through an interactive two‐part discussion and a hands‐on ideation session on impacts and guidelines for systems designed to facilitate serendipity, emphasizing sustainable, accessible researcher and user experiences. Presenters focus on the role of socio‐technical constraints and affordances to inform systems' design in a variety of research contexts, each contributing expertise in navigating particular issues in serendipity research

    Methodology on Quantification of Sonication Duration for Safe Application of MR Guided Focused Ultrasound for Liver Tumour Ablation

    Get PDF
    Background and objective Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. Methods The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. Results The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). Conclusion The evidence obtained via this protocol is crucial for translation- of-research into the clinics for safe application of MRgFUS. The developed protocol could be used for system maintenance in compliance with quality systems in clinics for daily quality assurance routines

    Data-Driven Discovery of Immune Contexture Biomarkers

    Get PDF
    Background: Features characterizing the immune contexture (IC) in the tumor microenvironment can be prognostic and predictive biomarkers. Identifying novel biomarkers can be challenging due to complex interactions between immune and tumor cells and the abundance of possible features.Methods: We describe an approach for the data-driven identification of IC biomarkers. For this purpose, we provide mathematical definitions of different feature classes, based on cell densities, cell-to-cell distances, and spatial heterogeneity thereof. Candidate biomarkers are ranked according to their potential for the predictive stratification of patients.Results: We evaluated the approach on a dataset of colorectal cancer patients with variable amounts of microsatellite instability. The most promising features that can be explored as biomarkers were based on cell-to-cell distances and spatial heterogeneity. Both the tumor and non-tumor compartments yielded features that were potentially predictive for therapy response and point in direction of further exploration.Conclusion: The data-driven approach simplifies the identification of promising IC biomarker candidates. Researchers can take guidance from the described approach to accelerate their biomarker research

    Statins Reverse Postpartum Cardiovascular Dysfunction in a Rat Model of Preeclampsia.

    Get PDF
    Preeclampsia is associated with increased cardiovascular long-term risk; however, the underlying functional and structural mechanisms are unknown. We investigated maternal cardiac alterations after preeclampsia. Female rats harboring the human angiotensinogen gene [TGR(hAogen)L1623] develop a preeclamptic phenotype with hypertension and albuminuria during pregnancy when mated with male rats bearing the human renin gene [TGR(hRen)L10J] but behave physiologically normal before and after pregnancy. Furthermore, rats were treated with pravastatin. We tested the hypothesis that statins are a potential therapeutic intervention to reduce cardiovascular alterations due to simulated preeclamptic pregnancy. Although hypertension persists for only 8 days in pregnancy, former preeclampsia rats exhibit significant cardiac hypertrophy 28 days after pregnancy observed in both speckle tracking echocardiography and histological staining. In addition, fibrosis and capillary rarefaction was evident. Pravastatin treatment ameliorated the remodeling and improved cardiac output postpartum. Preeclamptic pregnancy induces irreversible structural changes of cardiac hypertrophy and fibrosis, which can be moderated by pravastatin treatment. This pathological cardiac remodeling might be involved in increased cardiovascular risk in later life

    Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

    Get PDF
    1. Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. 2. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth–trait relationships may vary along environmental gradients. 3. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. 4. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. 5. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR–trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. 6. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer

    Evaluation of a numerical simulation for cryoablation – comparison with bench data, clinical kidney and lung cases

    No full text
    Purpose The accuracy of a numerical simulation of cryoablation ice balls was evaluated in gel phantom data as well as clinical kidney and lung cases. Materials and methods To evaluate the accuracy, 64 experimental single-needle cryoablations and 12 multi-needle cryoablations in gel phantoms were re-simulated with the corresponding freeze-thaw-freeze cycles. The simulated temperatures were compared over time with the measurements of thermocouples. For single needles, temperature values were compared at each thermocouple location. For multiple needles, Euclidean distances between simulated and measured isotherms (10 °C, 0 °C, −20 °C, −40 °C) were computed. Furthermore, surface and volume of simulated 0 °C isotherms were compared to cryoablation-induced ice balls in 14 kidney and 13 lung patients. For this purpose, needle positions and relevant anatomical structures defining material parameters (kidney/lung, tumor) were reconstructed from pre-ablation CT images and fused with postablation CT images (from which ice balls were extracted by manual delineation). Results The single-needle gel phantom cases showed less than 5 °C prediction error on average. Over all multiple needle experiments in gel, the mean and maximum isotherm distance were less than 2.3 mm and 4.1 mm, respectively. Average Dice coefficients of 0.82/0.63 (kidney/lung) and mean surface distances of 2.59/3.12 mm quantify the prediction performance of the numerical simulation. However, maximum surface distances of 10.57/10.8 mm indicate that locally larger errors have to be expected. Conclusion A very good agreement of the numerical simulations for gel experiments was measured and a satisfactory agreement of the numerical simulations with measured ice balls in patient data was shown

    Workflow and intervention times of MR-guided focused ultrasound - Predicting the impact of new techniques

    No full text
    Magnetic resonance guided focused ultrasound surgery (MRgFUS) has become an attractive, non-invasive treatment for benign and malignant tumours, and offers specific benefits for poorly accessible locations in the liver. However, the presence of the ribcage and the occurrence of liver motion due to respiration limit the applicability MRgFUS. Several techniques are being developed to address these issues or to decrease treatment times in other ways. However, the potential benefit of such improvements has not been quantified. In this research, the detailed workflow of current MRgFUS procedures was determined qualitatively and quantitatively by using observation studies on uterine MRgFUS interventions, and the bottlenecks in MRgFUS were identified. A validated simulation model based on discrete events simulation was developed to quantitatively predict the effect of new technological developments on the intervention duration of MRgFUS on the liver. During the observation studies, the duration and occurrence frequencies of all actions and decisions in the MRgFUS workflow were registered, as were the occurrence frequencies of motion detections and intervention halts. The observation results show that current MRgFUS uterine interventions take on average 213 min. Organ motion was detected on average 2.9 times per intervention, of which on average 1.0 actually caused a need for rework. Nevertheless, these motion occurrences and the actions required to continue after their detection consumed on average 11% and up to 29% of the total intervention duration. The simulation results suggest that, depending on the motion occurrence frequency, the addition of new technology to automate currently manual MRgFUS tasks and motion compensation could potentially reduce the intervention durations by 98.4% (from 256 h 5 min to 4 h 4 min) in the case of 90% motion occurrence, and with 24% (from 5 h 19 min to 4 h 2 min) in the case of no motion. In conclusion, new tools were developed to predict how intervention durations will be affected by future workflow changes and by the introduction of new technology
    corecore