605 research outputs found

    Downregulation of Tumor Necrosis Factor Expression in the Human Mono-Mac-6 Cell Line

    Get PDF
    Mono-Mac-6 cells, but not U937 cells, can be Induced to rapidly express tumor necrosis factor (TNF) mRNA and protein when triggered with Ilpopolysaccharlde (LPS) at 1 pg/mI. Preincubatlon of the cells for 3 d with low amounts of LPS (10 ng/mI) results In nearly complete suppression of TNF secretion. This downreguiatlon appears to occur at the pretranslational level since specIfIc mRNA is virtually undetectable under these conditions. By contrast, the same prelncubatlon with 10 ng/mI LPS results in enhanced phagocytosls (28.6-67.2% for Staphylococcus aureus), demonstrating that not all monocyte functions are suppressed. While these results show that only stringent exclusion of LPS from culture media allows for Induction of TNF In the Mono-Mac-6 cell line, the pronounced effect of LPS preincubatlon may also provide a suitable model with which to study the mechanisms of LPS-lnduced desensitizatIon

    Severe dysfunction of respiratory chain and cholesterol metabolism in Atp7b−/− mice as a model for Wilson disease

    Get PDF
    AbstractWilson disease (WD) is caused by mutations of the WD gene ATP7B resulting in copper accumulation in different tissues. WD patients display hepatic and neurological disease with yet poorly understood pathomechanisms. Therefore, we studied age-dependent (3, 6, 47weeks) biochemical and bioenergetical changes in Atp7b−/− mice focusing on liver and brain. Mutant mice showed strongly elevated copper and iron levels. Age-dependently decreasing hepatic reduced glutathione levels along with increasing oxidized to reduced glutathione ratios in liver and brain of 47weeks old mice as well as elevated hepatic and cerebral superoxide dismutase activities in 3weeks old mutant mice highlighted oxidative stress in the investigated tissues. We could not find evidence that amino acid metabolism or beta-oxidation is impaired by deficiency of ATP7B. In contrast, sterol metabolism was severely dysregulated. In brains of 3week old mice cholesterol, 8-dehydrocholesterol, desmosterol, 7-dehydrocholesterol, and lathosterol were all highly increased. These changes reversed age-dependently resulting in reduced levels of all previously increased sterol metabolites in 47weeks old mice. A similar pattern of sterol metabolite changes was found in hepatic tissue, though less pronounced. Moreover, mitochondrial energy production was severely affected. Respiratory chain complex I activity was increased in liver and brain of mutant mice, whereas complex II, III, and IV activities were reduced. In addition, aconitase activity was diminished in brains of Atp7b−/− mice. Summarizing, our study reveals oxidative stress along with severe dysfunction of mitochondrial energy production and of sterol metabolism in Atp7b−/− mice shedding new light on the pathogenesis of WD

    Histological Correlates of Diffusion-Weighted Magnetic Resonance Microscopy in a Mouse Model of Mesial Temporal Lobe Epilepsy

    Get PDF
    Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy. It is frequently associated with abnormal MRI findings, which are caused by underlying cellular, structural, and chemical changes at the micro-scale. In the current study, it is investigated to which extent these alterations correspond to imaging features detected by high resolution magnetic resonance imaging in the intrahippocampal kainate mouse model of MTLE. Fixed hippocampal and whole-brain sections of mouse brain tissue from nine animals under physiological and chronically epileptic conditions were examined using structural and diffusion-weighted MRI. Microstructural details were investigated based on a direct comparison with immunohistochemical analyses of the same specimen. Within the hippocampal formation, diffusion streamlines could be visualized corresponding to dendrites of CA1 pyramidal cells and granule cells, as well as mossy fibers and Schaffer collaterals. Statistically significant changes in diffusivities, fractional anisotropy, and diffusion orientations could be detected in tissue samples from chronically epileptic animals compared to healthy controls, corresponding to microstructural alterations (degeneration of pyramidal cells, dispersion of the granule cell layer, and sprouting of mossy fibers). The diffusion parameters were significantly correlated with histologically determined cell densities. These findings demonstrate that high-resolution diffusion-weighted MRI can resolve subtle microstructural changes in epileptic hippocampal tissue corresponding to histopathological features in MTLE

    Corrigendum: Histological Correlates of Diffusion-Weighted Magnetic Resonance Microscopy in a Mouse Model of Mesial Temporal Lobe Epilepsy

    Get PDF
    In the published article, there were errors in affiliations 2 and 3. Instead of “Experimental Epilepsy Research, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany” and “Department Neurosurgery, Experimental Epilepsy Research, Medical Center, University of Freiburg, Freiburg, Germany,” they should be “Faculty of Medicine, University of Freiburg, Freiburg, Germany” and “Experimental Epilepsy Research, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany,” respectively. The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated

    pEPito: a significantly improved non-viral episomal expression vector for mammalian cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed <it>Cytomegalovirus </it>immediate early promoter (CMV-IEP) and directed into a 2000 bp long <it>matrix attachment region sequence </it>(MARS) derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression.</p> <p>Results</p> <p>Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both <it>in vitro </it>and <it>in vivo</it>. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies <it>in vitro</it>, as well as more persistent transgene expression profiles <it>in vivo</it>. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the <it>human CMV enhancer/human elongation factor 1 alpha promoter </it>(hCMV/EF1P) element that is known to be less affected by epigenetic silencing events.</p> <p>Conclusions</p> <p>The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications <it>in vitro </it>and for non-viral gene delivery <it>in vivo</it>.</p

    The SARS-coronavirus-host interactome

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock

    Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy

    Get PDF
    Mesial temporal lobe epilepsy (mTLE) is the most common focal epilepsy in adults and is often refractory to medication. So far, resection of the epileptogenic focus represents the only curative therapy. It is unknown whether pathological processes preceding epilepsy onset are indicators of later disease severity. Using longitudinal multi-modal MRI, we monitored hippocampal injury and tissue reorganization during epileptogenesis in a mouse mTLE model. The prognostic value of MRI biomarkers was assessed by retrospective correlations with pathological hallmarks Here, we show for the first time that the extent of early hippocampal neurodegeneration and progressive microstructural changes in the dentate gyrus translate to the severity of hippocampal sclerosis and seizure burden in chronic epilepsy. Moreover, we demonstrate that structural MRI biomarkers reflect the extent of sclerosis in human hippocampi. Our findings may allow an early prognosis of disease severity in mTLE before its first clinical manifestations, thus expanding the therapeutic window

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome
    corecore