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A striking feature of severe forms of coronavirus disease 2019 (COVID-19), the current 

pandemic caused by the coronavirus SARS-CoV-2, is severe endothelial injury with micro- and 

macro-thrombotic disease in the lung and other organs, including the heart. This has led to 

speculation that viral infection may damage the endothelium through two mechanisms: 

indirectly, via neighbourhood effects, circulating mediators and immune mechanisms, or directly 

by viral infection of endothelial cells (EC).  

To support the hypothesis of direct viral damage of EC via virus-induced infection, the 

cells should express the main receptor for SARS-CoV-2, angiotensin-converting enzyme 2 

(ACE2), a metalloproteinase component of the renin-angiotensin hormone system and a critical 

regulator of cardiovascular homeostasis1. Indeed, several recent review articles propose that 

SARS-CoV-2 binding to ACE2 on EC is the mechanism through which the virus may cause 

direct endothelial damage and endothelialitis1. However, expression of ACE2 in EC has not been 

convincingly demonstrated to support this assumption, nor has there been sufficient evidence to 

support a direct infection of EC by SARS-CoV-2.  

To address the questions of ACE2 expression in human EC and of the ability of SARS-

CoV-2 to infect the endothelium, we interrogated transcriptomic and epigenomic data on human 

EC and studied the interaction and replication of SARS-Cov-2 and its viral proteins with EC in 

vitro. The data, analytic methods, and study materials will be maintained by the corresponding 

author and made available to other researchers on reasonable request.  

Analysis of RNA-seq was carried out on ENCODE data from EC from arterial, venous 

and microvascular beds, in comparison with epithelial cells from respiratory, gastrointestinal and 

skin sources. Very low or no basal ACE2 expression was found in EC, compared to epithelial 

cells (Figure A-B). Moreover, in vitro exposure of EC to inflammatory cytokines reported as 
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elevated in the plasma of patients with severe COVID-19 failed to upregulate ACE2 expression 

(Figure C).  

Publicly available single-cell RNA-sequencing (scRNAseq) of human organ donor 

hearts2 showed that while ACE2 sequence reads are abundant in pericytes (PC), they are rare in 

EC (Figure D). Out of 100,579 EC, only 468 (0,47%) were ACE2+, and in the majority (424) 

only a single ACE2 transcript was detected. This could reflect true low and rare endothelial 

ACE2 expression, but also contamination from adherent PC fragments, a common confounder in 

vascular scRNAseq data3. If such fragments contributed the ACE2 transcripts observed in certain 

EC, we would expect to detect other pericyte transcripts in the same cells. Indeed, among the 

top-50 gene transcripts enriched in ACE2+ vs. ACE2- EC, we noticed several known pericyte 

markers, including PDGFRB, ABCC9, KCNJ8 and RGS5 (Figure E). Comparison of transcript 

abundance across the three major vascular and mesothelial cells showed that the top-50 gene 

transcripts were expressed at the highest levels in PC (Figure E). This suggests that the rare 

occurrence of ACE2 transcripts in human heart EC is likely caused by pericyte contamination. 

Similar conclusions have previously been reached in mouse tissues3 . 

Analysis of the chromatin landscape at the ACE2 gene locus in human umbilical vein EC 

(HUVEC) using data from ENCODE further supports this concept. The histone modification 

mark H3K27me3, which indicates repressed chromatin, was enriched at the ACE2 transcription 

start site (TSS); conversely, promoter, enhancer and gene body activation marks (H3K27ac, 

H3K4me1, H3K4me2, H3K4me3, H3K36me3), RNA polymerase-II and DNase I 

hypersensitivity were absent or low, suggesting that ACE2 is inactive in EC. In marked contrast, 

the adjacent gene BMX, an endothelial-restricted non-receptor tyrosine kinase displays an 
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epigenetic profile consistent with active endothelial expression (Figure F). Thus, transcriptomic 

and epigenomic data indicate that ACE2 is not expressed in human EC.  

Other cell surface molecules have been suggested as possible receptors for the virus, but 

their role in supporting SARS-CoV-2 cell infection remains to be demonstrated. We therefore 

tested directly whether EC could be capable of supporting coronavirus replication in vitro. 

Productive levels of replication in primary human cardiac and pulmonary EC were observed for 

the human coronavirus 229E GFP reporter virus4, which utilises CD13 as its receptor, 

demonstrating directly that human EC can support coronavirus replication in principle (Figure 

G). However, when cells were exposed to SARS-CoV-2, replication levels were extremely low 

for EC, even following exposure to very high concentrations of virus compared to more 

permissive VeroE6 cells (Figure H). The observed low levels of SARS-CoV-2 replication in EC 

are likely explained by viral entry via a non-ACE2 dependent route, due to exposure to 

extremely high concentrations of virus in these experiments (MOI 10 and 100).  

These data indicate that direct endothelial infection by SARS-Cov-2 is not likely to 

occur. The endothelial damage reported in severely ill COVID19 patients is more likely 

secondary to infection of neighbouring cells and/or other mechanisms, including immune cells, 

platelets and complement activation, and circulating proinflammatory cytokines. Our hypothesis 

is corroborated by recent evidence that plasma from critically ill and convalescent patients with 

COVID-19 causes endothelial cell cytotoxicity5. These finding have implications for therapeutic 

approaches to tackle vascular damage in severe COVID19 disease.   
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Figure Legend 

 

Figure. Analysis of ACE2 expression in human endothelial cells and of coronavirus 

replication in primary human endothelial cells.  

(A-B) Comparison of ACE2 expression in human primary epithelial and endothelial cells 

using total RNA-seq data from the ENCODE Database shows low or absent expression in 

EC. (A) The difference of ACE2 expression in epithelial and endothelial cells is shown in 

boxplots with individual, as well as grouped samples (inner boxplot). Each dot represents a 

single sample (n=2 per cell type). (B) Transcriptome profiles of epithelial and endothelial cells 

are shown in a density plot, using the median of all samples per group (n=19360 genes). ACE2 

expression in each group is marked with a dotted line: ACE2 expression in endothelial cells (red) 

overlaps with the peak for non-expressed transcripts (highlighted in grey), while ACE2 

expression in epithelial cells (blue) is to the right, indicating detectable expression. Median 

ACE2 expression in endothelial cells equals -5.6 in log2 CPM (Counts Per Million), which 

corresponds to 0 raw read counts, signifying undetectable ACE2 expression in the majority of 

endothelial cells. Expression values in all plots are represented as log2-transformed CPM, 

normalized by Trimmed Mean of M-value (blue: epithelial, red: endothelial). (C) ACE2 

expression is not regulated by inflammatory cytokines in HUVEC. qPCR analysis of ACE2 

mRNA expression in HUVEC treated with a mix of 4 cytokines/chemokines (TNF-α, IL1-β, IL8 

and IL6/IL6R chimeric protein) for 4h or 24h at 0, 0.01, 0.1 or 1.0 ng/ml. Data are normalized to 

GAPDH and presented as mean ± SEM of 3 independent experiments. (D-E) Very low-level, 

rare and likely contaminating ACE2 transcripts are seen in EC. (D) ACE2 transcript reads 

are detected preferentially in PC. UMAP landscapes of publicly available human heart datasets2 
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include 100,579 endothelial cells (EC), 77,856 pericytes (PC), 16,242 smooth muscle cells 

(SMC) and 718 mesothelial cells (MC) (https://www.heartcellatlas.org/). ACE2 transcript reads 

are detected preferentially in the PC cluster (enriching for ABCC9) and are rare in the EC cluster 

(enriching for PECAM1). (E) PC transcripts are enriched together with ACE2 in 0.47% of EC. 

Dot plot displaying the abundance of top-50 transcripts enriched ACE2+ vs. ACE2- EC, across 

cell types indicated in D.  (The Wilcoxon Rank Sum tests with Bonferroni-corrected p values are 

< 1E-60 for each). (F) Epigenetic profiling indicates that the ACE2 gene is inactive in EC. 

ChIP-seq binding profiles in HUVEC for histone modifications, RNA Pol2 enrichment and 

DNAse I hypersensitivity. The x axis represents the genomic position, the transcription start sites 

are indicated by closed arrows and the direction of transcription is indicated by open arrows; the 

y axis shows ChIP-seq signal in reads per million per base pair (rpm/bp). The bottom row 

represents the chromatin state segmentation. Colour key: active promoter, red; enhancers, 

yellow; transcriptional elongation, green; repressed, grey. (G-H) Coronavirus replication in 

primary human cardiac and pulmonary endothelial cells shows limited replication of 

SARS-CoV-2. (G) Viral replication curves in human pulmonary (HPAEC) and cardiac 

(HCAEC) endothelial cells following infection with control HCoV-229E GFP reporter virus 

(MOI = 0.6). Virus replication was measured via GFP fluorescence every 2 hours from 20 to 58 

hours post inoculation. Mean ±SEM of 3 technical replicates are shown at each time point for 

each biological replicate. (H) Viral growth curves in HPAEC (n=3), HCAEC (n=3), and non-

endothelial Vero cells (n=1) following infection with SARS-CoV-2 at MOI = 10 or 100. 

Supernatant were collected at 1, 24, and 48 hours post infection and virus copy number 

quantified by RT-qPCR detection of the SARS-CoV-2 N3 gene. TCID= tissue culture infectivity 

dose. 
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