155 research outputs found

    A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems

    Get PDF
    Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosettaâ„¢ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications

    Machine-learning of atomic-scale properties based on physical principles

    Full text link
    We briefly summarize the kernel regression approach, as used recently in materials modelling, to fitting functions, particularly potential energy surfaces, and highlight how the linear algebra framework can be used to both predict and train from linear functionals of the potential energy, such as the total energy and atomic forces. We then give a detailed account of the Smooth Overlap of Atomic Positions (SOAP) representation and kernel, showing how it arises from an abstract representation of smooth atomic densities, and how it is related to several popular density-based representations of atomic structure. We also discuss recent generalisations that allow fine control of correlations between different atomic species, prediction and fitting of tensorial properties, and also how to construct structural kernels---applicable to comparing entire molecules or periodic systems---that go beyond an additive combination of local environments

    Paclitaxel resistance in untransformed human mammary epithelial cells is associated with an aneuploidy-prone phenotype

    Get PDF
    Despite its increasing clinical use, almost no data are currently available about paclitaxel effects on non-cancerous mammary epithelial cells. We have previously established paclitaxel-resistant sub-cell lines (paclitaxel-surviving populations, PSPs; n=20), and sensitive controls (control clones, CCs; n=10), from the untransformed human mammary epithelial cell line HME1. In this study, we aimed to establish whether paclitaxel resistance was associated with a modified sensitivity to paclitaxel-induced aneuploidy. For this purpose, we analysed basal and paclitaxel-induced chromosome missegregation, apoptosis and aberrant spindle multipolarisation as well as microtubular network composition for each subline. PSP sublines showed higher basal and paclitaxel-induced chromosome missegregation than the CC sublines. This phenomenon was associated with resistance to paclitaxel-induced apoptosis. No significant difference in paclitaxel-induced spindle pole abnormalities between CC and PSP sublines was found. Besides, we showed that a majority of PSPs display a constitutively disrupted microtubular network composition due to aberrant tubulin expression and post-translational modifications. These results clearly indicate that paclitaxel resistance in untransformed human mammary epithelial cells is related to an increased susceptibility to acquire aneuploidy in response to this agent. The consequences of these paclitaxel-associated alterations could be deleterious as they can potentially trigger tumorigenesis

    Task-Dependent Inhomogeneous Muscle Activities within the Bi-Articular Human Rectus Femoris Muscle

    Get PDF
    The motor nerve of the bi-articular rectus femoris muscle is generally split from the femoral nerve trunk into two sub-branches just before it reaches the distal and proximal regions of the muscle. In this study, we examined whether the regional difference in muscle activities exists within the human rectus femoris muscle during maximal voluntary isometric contractions of knee extension and hip flexion. Surface electromyographic signals were recorded from the distal, middle, and proximal regions. In addition, twitch responses were evoked by stimulating the femoral nerve with supramaximal intensity. The root mean square value of electromyographic amplitude during each voluntary task was normalized to the maximal compound muscle action potential amplitude (M-wave) for each region. The electromyographic amplitudes were significantly smaller during hip flexion than during knee extension task for all regions. There was no significant difference in the normalized electromyographic amplitude during knee extension among regions within the rectus femoris muscle, whereas those were significantly smaller in the distal than in the middle and proximal regions during hip flexion task. These results indicate that the bi-articular rectus femoris muscle is differentially controlled along the longitudinal direction and that in particular the distal region of the muscle cannot be fully activated during hip flexion

    Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments

    Get PDF
    Funding: Cancer Research UK. Research at The Institute of Cancer Research is supported by Cancer Research UK under Programme C33589/A19727. Peter Ziegenhein is supported by Cancer Research UK under Programme C33589/A19908.Combined radiotherapy and hyperthermia offer great potential for the successful treatment of radio-resistant tumours through thermo-radiosensitization. Tumour response heterogeneity, due to intrinsic, or micro-environmentally induced factors, may greatly influence treatment outcome, but is difficult to account for using traditional treatment planning approaches. Systems oncology simulation, using mathematical models designed to predict tumour growth and treatment response, provides a powerful tool for analysis and optimization of combined treatments. We present a framework that simulates such combination treatments on a cellular level. This multiscale hybrid cellular automaton simulates large cell populations (up to 107 cells) in vitro, while allowing individual cell-cycle progression, and treatment response by modelling radiation-induced mitotic cell death, and immediate cell kill in response to heating. Based on a calibration using a number of experimental growth, cell cycle and survival datasets for HCT116 cells, model predictions agreed well (R2 > 0.95) with experimental data within the range of (thermal and radiation) doses tested (0–40 CEM43, 0–5 Gy). The proposed framework offers flexibility for modelling multimodality treatment combinations in different scenarios. It may therefore provide an important step towards the modelling of personalized therapies using a virtual patient tumour.Publisher PDFPeer reviewe

    The athletic gut microbiota

    Get PDF
    The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors, such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power, aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing, and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the role of influencing athletic performance is of considerable interest to athletes who work to improve their results in competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond athletics as understanding optimal fitness has applications for overall health and wellness in larger communities. Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more "health-associated" gut microbiota. Such features include a higher abundance of health-promoting bacterial species, increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function

    International Society of Sports Nutrition Position Stand: Probiotics

    Get PDF
    © 2019 The Author(s). Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO). 2) Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications. 3) Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent. 4) Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown. 5) The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components. 6) Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections. 7) Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes. 8) Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise. 9) The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells. 10) Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    A Model of a MAPK•Substrate Complex in an Active Conformation: A Computational and Experimental Approach

    Get PDF
    The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-ΦA-X-ΦB, where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-ΦA-X-ΦB13. This results in a 2-fold increase in kcat/Km for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves kcat/Km by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in kcat/Km, with little apparent change in kcat. A peptide that binds to the DRS of ERK2 affects Km, but not kcat. Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction
    • …
    corecore